DNA Duplex Formation with a Coarse-Grained Model

被引:36
|
作者
Maciejczyk, Maciej [1 ,2 ]
Spasic, Aleksandar [1 ,3 ]
Liwo, Adam [1 ,4 ]
Scheraga, Harold A. [1 ]
机构
[1] Cornell Univ, Baker Lab Chem, Ithaca, NY 14850 USA
[2] Univ Warmia & Mazury, Fac Food Sci, Dept Phys & Biophys, PL-11041 Olsztyn, Poland
[3] Univ Rochester, Dept Biochem & Biophys, Med Ctr, Rochester, NY 14642 USA
[4] Univ Gdansk, Fac Chem, PL-80308 Gdansk, Poland
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
HISTOGRAM ANALYSIS METHOD; DEOXYRIBOSE NUCLEIC-ACID; FREE-ENERGY CALCULATIONS; HELIX-COIL TRANSITION; SINGLE-STRANDED-DNA; MOLECULAR-DYNAMICS; FORCE-FIELD; B-DNA; ELECTROSTATIC INTERACTIONS; MEZOSCOPIC MODEL;
D O I
10.1021/ct4006689
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A middle-resolution coarse-grained model of DNA is proposed. The DNA chain is built of spherical and planar rigid bodies connected by elastic virtual bonds. The bonded part of the potential energy function is fit to potentials of mean force of model systems. The rigid bodies are sets of neutral, charged, and dipolar beads. Electrostatic and van der Waals interactions are parametrized by our recently developed procedure [Maciejczyk, M.; Spasic, A.; Liwo, A.; Scheraga, H.A. J. Comp. Chem. 2010, 31, 1644]. Interactions with the solvent and an ionic cloud are approximated by a multipolemultipole DebyeHuckel model. A very efficient R-RATTLE algorithm, for integrating the movement of rigid bodies, is implemented. It is the first coarse-grained model, in which both bonded and nonbonded interactions were parametrized ab initio and which folds stable double helices from separated complementary strands, with the final conformation close to the geometry of experimentally determined structures
引用
收藏
页码:5020 / 5035
页数:16
相关论文
共 50 条
  • [41] Orientation relationships associated with austenite formation from ferrite in a coarse-grained duplex stainless steel
    E. F. Monlevade
    I. G. S. Falleiros
    Metallurgical and Materials Transactions A, 2006, 37 : 939 - 949
  • [42] A coarse-grained model captures the temporal evolution of DNA nanotube length distributions
    Mardanlou, Vahid
    Yaghoubi, Kimia C.
    Green, Leopold N.
    Subramanian, Hari K. K.
    Hariadi, Rizal F.
    Kim, Jongmin
    Franco, Elisa
    NATURAL COMPUTING, 2018, 17 (01) : 183 - 199
  • [43] Coarse-Grained Model of the Dynamics of Electrolyte Solutions
    Andreev, Marat
    Chremos, Alexandros
    de Pablo, Juan J.
    Douglas, Jack F.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (34): : 8195 - 8202
  • [44] Machine learning coarse-grained model for water
    Chan, Henry
    Cherukara, Mathew
    Narayanan, Badri
    Loeffler, Troy
    Benmore, Chris
    Gray, Stephen
    Sankaranarayanan, Subramanian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [45] A coarse-grained model for granular compaction and relaxation
    Head, DA
    Rodgers, GJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (01): : 107 - 122
  • [46] Coarse-Grained Model of Nucleic Acid Bases
    Maciejczyk, Maciej
    Spasic, Aleksandar
    Liwo, Adam
    Scheraga, Harold A.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2010, 31 (08) : 1644 - 1655
  • [47] A Coarse-Grained Model for Protein Backbone Dynamics
    Wagenmann, Andreas
    Geyer, Tihamer
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 474A - 474A
  • [48] A novel supra coarse-grained model for cellulose
    Mehandzhiyski, Aleksandar Y.
    Rolland, Nicolas
    Garg, Mohit
    Wohlert, Jakob
    Linares, Mathieu
    Zozoulenko, Igor
    CELLULOSE, 2020, 27 (08) : 4221 - 4234
  • [49] Coarse-Grained Simulations of Model Polymer Nanofibres
    Milani, Alberto
    Casalegno, Mose
    Castiglioni, Chiara
    Raos, Guido
    MACROMOLECULAR THEORY AND SIMULATIONS, 2011, 20 (05) : 305 - 319
  • [50] Coarse-grained lattice model for molecular recognition
    Behringer, Hans
    Degenhard, Andreas
    Schmid, Friederike
    PHYSICAL REVIEW LETTERS, 2006, 97 (12)