Ergodic averages with generalized weights

被引:2
|
作者
Comez, Dogan [1 ]
Litvinov, Semyon N.
机构
[1] N Dakota State Univ, Dept Math, Fargo, ND 58105 USA
[2] Penn State Univ, Dept Math, Hazleton, PA 18202 USA
[3] Ben Gurion Univ Negev, IL-84105 Beer Sheva, Israel
关键词
weighted and subsequential ergodic theorems; admissible processes; bounded Besicovitch sequences;
D O I
10.4064/sm173-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Two types of weighted ergodic averages are studied. It is shown that if F = {F-n} is an admissible superadditive process relative to a measure preserving transformation, then a Wiener-Wintner type result holds for F. Using this result new good classes of weights generated by such processes are obtained. We also introduce another class of weights via the group of unitary functions, and study the convergence of the corresponding weighted averages. The limits of such weighted averages are also identified.
引用
收藏
页码:103 / 128
页数:26
相关论文
共 50 条
  • [41] MULTIPLE ERGODIC AVERAGES FOR TEMPERED FUNCTIONS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (03) : 1177 - 1205
  • [42] MULTIPLE ERGODIC AVERAGES FOR VARIABLE POLYNOMIALS
    Koutsogiannis, Andreas
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (09) : 4637 - 4668
  • [43] Powers of sequences and convergence of ergodic averages
    Frantzikinakis, N.
    Johnson, M.
    Lesigne, E.
    Wierdl, M.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2010, 30 : 1431 - 1456
  • [44] Norm convergence of nilpotent ergodic averages
    Walsh, Miguel N.
    ANNALS OF MATHEMATICS, 2012, 175 (03) : 1667 - 1688
  • [45] Ergodic averages for independent polynomials and applications
    Frantzikinakis, Nikos
    Kra, Bryna
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 : 131 - 142
  • [46] Level sets of multiple ergodic averages
    Fan, Ai-Hua
    Liao, Lingmin
    Ma, Ji-Hua
    MONATSHEFTE FUR MATHEMATIK, 2012, 168 (01): : 17 - 26
  • [47] Nilsystems and ergodic averages along primes
    Eisner, Tanja
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (10) : 2769 - 2777
  • [48] On Variation Functions for Subsequence Ergodic Averages
    R. Nair
    M. Weber
    Monatshefte für Mathematik, 1999, 128 : 131 - 150
  • [49] ON MEAN ERGODIC THEOREM FOR WEIGHTED AVERAGES
    HANSON, DL
    PLEDGER, G
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 13 (02): : 141 - &
  • [50] Convergence of the lacunary ergodic Cesaro averages
    Bernardis, Ana
    Iaffei, Bibiana
    Martin-Reyes, Francisco J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 226 - 246