Signal compression using discrete fractional Fourier transform and set partitioning in hierarchical tree

被引:21
|
作者
Vijaya, C.
Bhat, J. S. [1 ]
机构
[1] Karnatak Univ, Dept Phys, Dharwad 580003, Karnataka, India
[2] SDM Coll Engn & Technol, Dharwad 580002, Karnataka, India
关键词
signal compression; FRFT; nonstationary signal; TFR; DFRFT; SPIHT;
D O I
10.1016/j.sigpro.2005.09.025
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Signal compression has been characterized as the removal of redundancy and irrelevancy. Fractional Fourier Transform (FRFT), an orthogonal, linear transform, is known to decompose the signal in terms of chirps. In this paper we propose a scheme for signal compression based on the combination of discrete FRFT (DFRFT) and set partitioning in hierarchical tree (SPIHT). The application of the scheme to different types of signals demonstrates significant reduction in bits leading to high Signal compression ratio. The results are compared with those obtained with discrete cosine transform (DCT). (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:1976 / 1983
页数:8
相关论文
共 50 条
  • [31] THE ANALYSIS OF THE DISCRETE FRACTIONAL FOURIER TRANSFORM ALGORITHMS
    Ran, Qi-Wen
    Zhang, Hai-Ying
    Zhang, Zhong-Zhao
    Sha, Xue-Jun
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 689 - 692
  • [32] Discrete fractional Fourier transform: Vandermonde approach
    Soto-Eguibar, Francisco (feguibar@inaoep.mx), 1600, Oxford University Press (83):
  • [33] Discrete fractional Fourier transform: Vandermonde approach
    Moya-Cessa, Hector M.
    Soto-Eguibar, Francisco
    IMA JOURNAL OF APPLIED MATHEMATICS, 2018, 83 (06) : 908 - 916
  • [34] Multichannel Random Discrete Fractional Fourier Transform
    Kang, Xuejing
    Zhang, Feng
    Tao, Ran
    IEEE SIGNAL PROCESSING LETTERS, 2015, 22 (09) : 1340 - 1344
  • [35] Method for the discrete fractional Fourier transform computation
    Yeh, MH
    Pei, SC
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (03) : 889 - 891
  • [36] The discrete fractional Fourier transform and its simulation
    Ran, QW
    Feng, YJ
    Wang, JZ
    Wu, QT
    CHINESE JOURNAL OF ELECTRONICS, 2000, 9 (01): : 70 - 75
  • [37] The analysis of resolution of the discrete fractional Fourier transform
    Deng, Bing
    Tao, Ran
    ICICIC 2006: FIRST INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING, INFORMATION AND CONTROL, VOL 3, PROCEEDINGS, 2006, : 10 - +
  • [38] FPGA implementation of Discrete Fractional Fourier Transform
    Prasad, M. V. N. V.
    Ray, K. C.
    Dhar, A. S.
    2010 INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS (SPCOM), 2010,
  • [39] Geometry and dynamics in the fractional discrete Fourier transform
    Wolf, Kurt Bernardo
    Krotzsch, Guillermo
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (03) : 651 - 658
  • [40] Hirschman Uncertainty with the Discrete Fractional Fourier Transform
    Ghuman, Kirandeep
    DeBrunner, Victor
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1306 - 1310