A note on n! modulo p

被引:6
|
作者
Garaev, M. Z. [1 ]
Hernandez, J. [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Ctr Ciencias Matemat, Morelia 58089, Michoacan, Mexico
来源
MONATSHEFTE FUR MATHEMATIK | 2017年 / 182卷 / 01期
关键词
Factorials; Congruences; Exponential and character sums; Additive combinatorics; POINTS; CURVES; SUMS;
D O I
10.1007/s00605-015-0867-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be a prime, epsilon > 0 and 0 < L + 1 < L + N < p. We prove that if p(1/2+epsilon) < N < p(1-epsilon), then #{n! (mod p); L + 1 <= n <= L + N} > c( N log N)(1/2), c = c(epsilon) > 0. We use this bound to show that any lambda not equivalent to 0 (mod p) can be represented in the form lambda = n(1)!...n(7)! (mod p), where n(i) = o(p(11/12)). This refines the previously known range for n(i).
引用
收藏
页码:23 / 31
页数:9
相关论文
共 50 条
  • [1] A note on n! modulo p
    M. Z. Garaev
    J. Hernández
    Monatshefte für Mathematik, 2017, 182 : 23 - 31
  • [2] A note on cubic residues modulo n
    Ramesh, V. P.
    Gowtham, R.
    Sinha, Saswati
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01): : 62 - 65
  • [3] Note on taking square-roots modulo N
    Univ of Wisconsin-Madison, Madison, United States
    IEEE Trans Inf Theory, 2 (807-809):
  • [4] Note on taking square-roots modulo N
    Bach, E
    Huber, K
    IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (02) : 807 - 809
  • [5] A note on the Mordell-Weil rank modulo n
    Dokchitser, Tim
    Dokchitser, Vladimir
    JOURNAL OF NUMBER THEORY, 2011, 131 (10) : 1833 - 1839
  • [6] On transitive differentiable modulo p(n) functions
    Ivachev, Artyom S.
    GROUPS COMPLEXITY CRYPTOLOGY, 2015, 7 (02) : 183 - 190
  • [7] The residue of p(N) modulo small primes
    Ono, K
    RAMANUJAN JOURNAL, 1998, 2 (1-2): : 47 - 54
  • [8] The Residue of p(N) Modulo Small Primes
    Ken Ono
    The Ramanujan Journal, 1998, 2 : 47 - 54
  • [9] A NOTE ON THE MODULO OPERATION
    CHANG, AP
    SIGPLAN NOTICES, 1985, 20 (04): : 19 - 23
  • [10] A note on some relations among special sums of reciprocals modulo p
    Skula, Ladislav
    MATHEMATICA SLOVACA, 2008, 58 (01) : 5 - 10