A note on some relations among special sums of reciprocals modulo p

被引:4
|
作者
Skula, Ladislav [1 ]
机构
[1] Univ Technol, Fac Math Engn, CZ-61669 Brno, Czech Republic
关键词
sum of reciprocals modulo p; Fermat quotient; Fibonacci quotient;
D O I
10.2478/s12175-007-0050-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note the sums s(k,N) of reciprocals [GRAPHICS] are investigated, where p is an odd prime, N, k are integers, p does not divide N, N >= 1 and 0 <= k <= N - 1. Some linear relations for these sums are derived using "logarithmic property" and Lerch's Theorem on the Fermat quotient. Particularly in case N = 10 another linear relation is shown by means of Williams' congruences for the Fibonacci numbers. (c) 2008 Mathematical Institute Slovak Academy of Sciences.
引用
收藏
页码:5 / 10
页数:6
相关论文
共 50 条
  • [1] Sums of reciprocals modulo composite integers
    Cosgrave, John B.
    Dilcher, Karl
    [J]. JOURNAL OF NUMBER THEORY, 2013, 133 (11) : 3565 - 3577
  • [2] SUMS OF RECIPROCALS OF RECURRENCE RELATIONS
    Cui, Hao
    Cui, Xiaoyu
    Davis, Sophia C.
    Durmic, Irfan
    Hu, Qingcheng
    Liu, Lisa
    Miller, Steven J.
    Ren, Fengping
    Reina, Alicia Smith
    Sosis, Eliel
    [J]. FIBONACCI QUARTERLY, 2022, 60 (05): : 111 - 142
  • [3] The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo p
    Zhang, Wenpeng
    Zhang, Jiafan
    [J]. AIMS MATHEMATICS, 2021, 6 (10): : 10989 - 11004
  • [4] Congruences Involving Special Sums of Triple Reciprocals
    Shen, Zhongyan
    [J]. JOURNAL OF MATHEMATICS, 2024, 2024
  • [5] Sums of fractions modulo p
    Diaz, C. A.
    Garaev, M. Z.
    [J]. ARCHIV DER MATHEMATIK, 2016, 106 (04) : 337 - 344
  • [6] Sums of fractions modulo p
    C. A. Díaz
    M. Z. Garaev
    [J]. Archiv der Mathematik, 2016, 106 : 337 - 344
  • [7] SUMS OF RECIPROCALS OF SOME MULTIPLICATIVE FUNCTIONS .2.
    RAMAIAH, VS
    SURYANARAYANA, D
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (10): : 1334 - 1355
  • [8] On sums and products of residues modulo p
    Sárközy, A
    [J]. ACTA ARITHMETICA, 2005, 118 (04) : 403 - 409
  • [9] ON SUMS OF FIBONACCI NUMBERS MODULO p
    Garcia, Victor C.
    Luca, Florian
    Mejia Huguet, V. Janitzio
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2011, 83 (03) : 413 - 419
  • [10] Two sums that are congruent modulo p
    Seiffert, HJ
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (02): : 176 - 176