Congruences Involving Special Sums of Triple Reciprocals

被引:0
|
作者
Shen, Zhongyan [1 ]
机构
[1] Zhejiang Int Studies Univ, Hangzhou 310023, Peoples R China
基金
中国国家自然科学基金;
关键词
CURIOUS CONGRUENCE; BERNOULLI NUMBERS;
D O I
10.1155/2024/8445635
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Define the sums of triple reciprocals Z(n)= Sigma( i+j+k=n)1/ijk,i,j,k >= 1. Zhao discovered the following curious congruence for any odd prime p, Zp equivalent to-2B(p-3)mod p. Xia and Cai extended the above congruence to modulo p(2),Zp equivalent to 12B(p-3)/p-3-3B(2p-4)/p-2mod p(2), where p>5 is a prime. In this paper, we consider the congruences about Zp-1+N/N (where x is the integral part of x, N=1,2,3,4,6) modulo p(2). When N=1, the results we obtain are the results of Zhao and Xia and Cai.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] CONGRUENCES FOR PARTIAL SUMS OF RECIPROCALS
    Al-Shaghay, Abdullah
    Dilcher, Karl
    [J]. FIBONACCI QUARTERLY, 2015, 53 (02): : 98 - 111
  • [2] Sums Involving Moments of Reciprocals of Binomial Coefficients
    Belbachir, Hacene
    Rahmani, Mourad
    Sury, B.
    [J]. JOURNAL OF INTEGER SEQUENCES, 2011, 14 (06)
  • [3] Congruences for sums involving Franel numbers
    Sun, Zhi-Hong
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2018, 14 (01) : 123 - 142
  • [4] Congruences for finite triple harmonic sums
    Xu-dan Fu
    Xia Zhou
    Tian-xin Cai
    [J]. Journal of Zhejiang University-SCIENCE A, 2007, 8 : 946 - 948
  • [5] Congruences for finite triple harmonic sums
    Fu Xu-dan
    Zhou Xia
    Cai Tian-xin
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (06): : 946 - 948
  • [7] Inequalities Involving Sums of Reciprocals of Fibonacci and Lucas Numbers
    Higuita, Robinson
    Davenport, Kenneth B.
    Fleischman, Dmitry
    Kwong, Harris
    Ohtsuka, Hideyuki
    Batinetu-Giurgiu, D. M.
    Stanciu, Neculai
    [J]. FIBONACCI QUARTERLY, 2015, 53 (03): : 282 - 283
  • [8] Congruences Involving Sums of Ratios of Lucas Sequences
    Ieronymou, Evis
    [J]. JOURNAL OF INTEGER SEQUENCES, 2014, 17 (08)
  • [9] SOME CONGRUENCES INVOLVING SUMS OF BINOMIAL COEFFICIENTS
    CARLITZ, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1960, 27 (01) : 77 - 79
  • [10] CONGRUENCES INVOLVING EULER NUMBERS AND POWER SUMS
    Mcintosh, Richard J.
    [J]. FIBONACCI QUARTERLY, 2020, 58 (04): : 328 - 333