High bit rate and elevated temperature data transmission using InGaAs quantum-dot lasers

被引:12
|
作者
Tan, KT
Marinelli, C [1 ]
Thompson, MG
Wonfor, A
Silver, M
Sellin, RL
Penty, RV
White, IH
Kuntz, M
Lämmlin, M
Ledentsov, NN
Bimberg, D
Zhukov, AE
Ustinov, VM
Kovsh, AR
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
[3] AF Ioffe Inst, St Petersburg 194021, Russia
[4] NCS Nanosemicond GmbH, D-44227 Dortmund, Germany
关键词
data modulation; data transmission; quantum-dot (QD) laser;
D O I
10.1109/LPT.2004.826009
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A 5-Gb/s data modulation and transmission is investigated using Fabry-Perot InGaAs quantum-dot lasers emitting at approximately 1.3 pm. Error-free transmission of 5-Gb/s data at room temperature over 4 km of single-mode fiber (SMF) and over 500 In of installed grade multimode fiber are demonstrated for the first time. The temperature dependence of the data modulation performance is also studied. We report error-free 2.5-Gb/s data modulation up to 50 degreesC and transmission over 4 km of SMF with a Q factor penalty of 0.5 dB. Error-free 5-Gb/s data modulation erved up to 30 degreesC and 5-Gb/s data transmission over 4 km of SMF with a Q-factor penalty of 0.8 dB is obtained at 40 degreesC. The lack of overshoot and ringing in the eye diagrams is attributed to the large damping factor observed under small-signal modulation.
引用
收藏
页码:1415 / 1417
页数:3
相关论文
共 50 条
  • [21] The role of free carriers and excitons on the lasing characteristics of InAs/InGaAs quantum-dot lasers
    Dikshit, A
    Pikal, JM
    APPLIED PHYSICS LETTERS, 2003, 82 (26) : 4812 - 4814
  • [22] Characteristics of InGaAs submonolayer quantum-dot and InAs quantum-dot photonic-crystal vertical-cavity surface-emitting lasers
    Yang, Hung-Pin D.
    Hsu, I. -Chen
    Chang, Ya-Hsien
    Lai, Fang-I
    Yu, Hsin-Chieh
    Lin, Gray
    Hsiao, Ru-Shang
    Maleev, Nikolai A.
    Blokhin, Sergej A.
    Kuo, Hao-Chung
    Chi, Jim Y.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26 (9-12) : 1387 - 1395
  • [23] Submonolayer InGaAs/GaAs quantum-dot lasers with high modal gain and zero-linewidth enhancement factor
    Xu, ZC
    Birkedal, D
    Juhl, M
    Hvam, JM
    APPLIED PHYSICS LETTERS, 2004, 85 (15) : 3259 - 3261
  • [24] High-power quantum-dot lasers at 1100 nm
    Heinrichsdorff, F
    Ribbat, C
    Grundmann, M
    Bimberg, D
    APPLIED PHYSICS LETTERS, 2000, 76 (05) : 556 - 558
  • [25] Room temperature operation of InGaAs/InGaAsP/InP quantum dot lasers
    Jang, JW
    Pyun, SH
    Lee, SH
    Lee, IC
    Jeong, WG
    Stevenson, R
    Dapkus, PD
    Kim, NJ
    Hwang, MS
    Lee, D
    APPLIED PHYSICS LETTERS, 2004, 85 (17) : 3675 - 3677
  • [26] Temperature-Dependent Threshold Current in InP Quantum-Dot Lasers
    Smowton, Peter M.
    Elliott, Stella N.
    Shutts, Samuel
    Al-Ghamdi, Mohammed S.
    Krysa, Andrey B.
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2011, 17 (05) : 1343 - 1348
  • [27] High-temperature operating 1.3-μm quantum-dot lasers for telecommunication applications
    Klopf, F
    Krebs, R
    Reithmaier, JP
    Forchel, A
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (08) : 764 - 766
  • [28] High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters
    Shang, Chen
    Hughes, Eamonn
    Wan, Yating
    Dumont, Mario
    Koscica, Rosalyn
    Selvidge, Jennifer
    Herrick, Robert
    Gossard, Arthur C.
    Mukherjee, Kunal
    Bowers, John E.
    OPTICA, 2021, 8 (05): : 749 - 754
  • [29] Threshold temperature dependence of lateral-cavity quantum-dot lasers
    Zou, Z
    Shchekin, OB
    Park, G
    Huffaker, DL
    Deppe, DG
    IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10 (12) : 1673 - 1675
  • [30] Threshold temperature dependence of lateral-cavity quantum-dot lasers
    Univ of Texas at Austin, Austin, United States
    IEEE Photonics Technol Lett, 12 (1673-1675):