Models for microrheology of complex magnetic fluids

被引:0
|
作者
Raikher, YL [1 ]
Rusakov, VV [1 ]
机构
[1] RAS, Ural Div, Inst Continuous Media Mech, Perm 614013, Russia
关键词
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A review of some aspects of orientational magnetodynamics of viscoelastic magnetic fluids and ferrogels is given. As an archetypal theoretical model we use an assembly of non-interacting dipolar Brownian nanoparticles embedded in and coupled to a matrix that possesses either a dynamic (Maxwellian) or a weak equilibrium (Hookean) elasticity or both. With regard to their magnetic properties, the particles are assumed to be rigid dipoles. In the mechanical aspect the particles are taken to be two-dimensional, i.e., are modeled by disks, either inertial or inertia-less. Two types of dissipative interaction between a particle and its environment-a simple Stokes viscous friction and a friction with a simple exponential memory (like in a Maxwellian fluid)-are analyzed. Using the linear response approach we find the equilibrium correlation functions and the dynamic magnetic susceptibilities of the media. For the case of inertia-less particles the kinetic equation of rotary diffusion is derived and certain peculiarities in its properties are discussed.
引用
下载
收藏
页码:253 / 261
页数:9
相关论文
共 50 条
  • [21] Magnetic Fluids and Their Complex Systems
    Kopcansky, Peter
    Timko, Milan
    Koneracka, Martina
    Zavisova, Vlasta
    Kubovcikova, Martina
    Molcan, Matus
    Balejcikova, Lucia
    Tomasovicova, Natalia
    Rajnak, Michal
    Gdovinova, Veronika
    MODERN PROBLEMS OF MOLECULAR PHYSICS, 2018, 197 : 151 - 184
  • [22] Driven granular fluids: Glass transition and microrheology
    Sperl M.
    Zippelius A.
    The European Physical Journal Special Topics, 2017, 226 (14) : 3079 - 3094
  • [23] Probing linear and nonlinear microrheology of viscoelastic fluids
    Gomez-Solano, J. R.
    Bechinger, C.
    EPL, 2014, 108 (05)
  • [24] Simple models for complex nonequilibrium fluids
    Kröger, M
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 390 (06): : 453 - 551
  • [25] LATTICE BOLTZMANN MODELS FOR COMPLEX FLUIDS
    FLEKKOY, EG
    HERRMANN, HJ
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1993, 199 (01) : 1 - 11
  • [26] ON MATHEMATICAL-MODELS OF MAGNETIC FLUIDS
    ZHELNOROVICH, VA
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 1987, 51 (04): : 539 - 548
  • [27] Magnetic microrods as a tool for microrheology
    Brasovs, Artis
    Cimurs, Janis
    Erglis, Kaspars
    Zeltins, Andris
    Berret, Jean-Francois
    Cebers, Andrejs
    SOFT MATTER, 2015, 11 (13) : 2563 - 2569
  • [28] Colloids in Active Fluids: Anomalous Microrheology and Negative Drag
    Foffano, G.
    Lintuvuori, J. S.
    Stratford, K.
    Cates, M. E.
    Marenduzzo, D.
    PHYSICAL REVIEW LETTERS, 2012, 109 (02)
  • [29] Molecular thermodynamics of primitive models of complex fluids
    Avendano, C.
    Ibarra-Avalos, N.
    Quezada, C. M.
    Medina, J.
    Gil-Villegas, A.
    REVISTA MEXICANA DE FISICA, 2006, 52 (05) : 85 - 91
  • [30] Active microrheology, Hall effect, and jamming in chiral fluids
    Reichhardt, C.
    Reichhardt, C. J. O.
    PHYSICAL REVIEW E, 2019, 100 (01)