Model and Feature Selection in Hidden Conditional Random Fields with Group Regularization

被引:0
|
作者
Cilla, Rodrigo [1 ]
Patricio, Miguel A. [1 ]
Berlanga, Antonio [1 ]
Molina, Jose M. [1 ]
机构
[1] Univ Carlos III Madrid, Dept Comp Sci, Colmenarejo 28270, Madrid, Spain
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Sequence classification is an important problem in computer vision, speech analysis or computational biology. This paper presents a new training strategy for the Hidden Conditional Random Field sequence classifier incorporating model and feature selection. The standard Lasso regularization employed in the estimation of model parameters is replaced by overlapping group-L1 regularization. Depending on the configuration of the overlapping groups, model selection, feature selection, or both are performed. The sequence classifiers trained in this way have better predictive performance. The application of the proposed method in a human action recognition task confirms that fact.
引用
收藏
页码:140 / 149
页数:10
相关论文
共 50 条
  • [42] Hidden Conditional Random Fields with Distributed User Embeddings for Ad Targeting
    Djuric, Nemanja
    Radosavljevic, Vladan
    Grbovic, Mihajlo
    Bhamidipati, Narayan
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2014, : 779 - 784
  • [43] Viewpoint Insensitive Actions Recognition Using Hidden Conditional Random Fields
    Ji, Xiaofei
    Liu, Honghai
    Li, Yibo
    [J]. KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, PT I, 2010, 6276 : 369 - +
  • [44] Robust Incremental Hidden Conditional Random Fields for Human Action Recognition
    Vrigkas, Michalis
    Mastora, Ermioni
    Nikou, Christophoros
    Kakadiaris, Ioannis A.
    [J]. ADVANCES IN VISUAL COMPUTING, ISVC 2018, 2018, 11241 : 126 - 136
  • [45] Aneuploidy prediction and tumor classification with heterogeneous hidden conditional random fields
    Barutcuoglu, Zafer
    Airoldi, Edoardo M.
    Dumeaux, Vanessa
    Schapire, Robert E.
    Troyanskaya, Olga G.
    [J]. BIOINFORMATICS, 2009, 25 (10) : 1307 - 1313
  • [46] Grammatical-Restrained Hidden Conditional Random Fields for Bioinformatics applications
    Piero Fariselli
    Castrense Savojardo
    Pier Luigi Martelli
    Rita Casadio
    [J]. Algorithms for Molecular Biology, 4
  • [47] Hidden Gibbs random fields model selection using Block Likelihood Information Criterion
    Stoehr, Julien
    Marin, Jean-Michel
    Pudlo, Pierre
    [J]. STAT, 2016, 5 (01): : 158 - 172
  • [48] Joint semi-supervised learning of Hidden Conditional Random Fields and Hidden Markov Models
    Soullard, Yann
    Saveski, Martin
    Artieres, Thierry
    [J]. PATTERN RECOGNITION LETTERS, 2014, 37 : 161 - 171
  • [49] An improved gaussian mixture hidden conditional random fields model for audio-based emotions classification
    Siddiqi, Muhammad Hameed
    [J]. EGYPTIAN INFORMATICS JOURNAL, 2021, 22 (01) : 45 - 51
  • [50] Feature Selection for Neural Networks Using Group Lasso Regularization
    Zhang, Huaqing
    Wang, Jian
    Sun, Zhanquan
    Zurada, Jacek M.
    Pal, Nikhil R.
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (04) : 659 - 673