Plasmon-driven acceleration in a photo-excited nanotube

被引:0
|
作者
Shin, Young-Min [1 ,2 ]
机构
[1] Northern Illinois Univ, Dept Phys, De Kalb, IL 60115 USA
[2] Fermilab Natl Accelerator Lab, APC, POB 500, Batavia, IL 60510 USA
关键词
19;
D O I
10.1063/1.4976546
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube [Z. Shi et al., Nat. Photonics 9, 515 (2015)]. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. The maximally achievable acceleration gradients and energy gains within dephasing lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] PHOTO-EXCITED PROCESSES RELATED TO SEMICONDUCTOR TECHNOLOGY
    HANABUSA, M
    THIN SOLID FILMS, 1992, 218 (1-2) : 144 - 150
  • [42] PHOTO-EXCITED ELECTRONS AND HOLES IN SILVER BROMIDE
    PLATIKANOVA, V
    JOURNAL FUR SIGNALAUFZEICHNUNGSMATERIALIEN, 1979, 7 (05): : 341 - 355
  • [43] REACTIONS OF PHOTO-EXCITED METHYLENE-BLUE
    HARMATZ, D
    BLAUER, G
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1983, 38 (03) : 385 - 387
  • [44] DYNAMICS OF THE TEST PULSE IN THE PHOTO-EXCITED SEMICONDUCTOR
    ILINOVA, TM
    FORTYGIN, AA
    IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1986, 50 (06): : 1229 - 1234
  • [45] TRAVOLTA: GPU acceleration and algorithmic improvements for constructing quantum optimal control fields in photo-excited systems
    Rodriguez-Borbon, Jose M.
    Wang, Xian
    Dieguez, Adrian P.
    Ibrahim, Khaled Z.
    Wong, Bryan M.
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 296
  • [46] Effect of Nanoparticle Size on Plasmon-Driven Reaction Efficiency
    Kim, Seokheon
    Lee, Sungwoon
    Yoon, Sangwoon
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (03) : 4163 - 4169
  • [47] Plasmon-Driven Selective Deposition of Au Bipyramidal Nanoparticles
    Guffey, Mason J.
    Miller, Ryan L.
    Gray, Stephen K.
    Scherer, Norbert F.
    NANO LETTERS, 2011, 11 (10) : 4058 - 4066
  • [48] Hot carriers in action: Plasmon-driven photocatalysis and photocorrosion
    Wang, Hui
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [49] Plasmon-driven nanowire actuators for on-chip manipulation
    Shuangyi Linghu
    Zhaoqi Gu
    Jinsheng Lu
    Wei Fang
    Zongyin Yang
    Huakang Yu
    Zhiyuan Li
    Runlin Zhu
    Jian Peng
    Qiwen Zhan
    Songlin Zhuang
    Min Gu
    Fuxing Gu
    Nature Communications, 12
  • [50] The role of oxygen in plasmon-driven transformation of silver nanoparticles
    Krajczewski, Jan
    Kolataj, Karol
    Parzyszek, Sylwia
    Abdulrahman, Heman Burhanalden
    Kudelski, Andrzej
    APPLIED SURFACE SCIENCE, 2016, 388 : 710 - 715