Forecasting financial series using clustering methods and support vector regression

被引:23
|
作者
Vilela, Lucas F. S. [1 ]
Leme, Rafael C. [1 ]
Pinheiro, Carlos A. M. [1 ]
Carpinteiro, Otavio A. S. [1 ]
机构
[1] Univ Fed Itajuba, Res Grp Syst & Comp Engn, BR-37500903 Itajuba, MG, Brazil
关键词
Financial time-series forecasting; Clustering; Support vector machine; Artificial intelligence; TIME-SERIES; STOCK; PREDICTION; MACHINES;
D O I
10.1007/s10462-018-9663-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a two-stage model for forecasting financial time series. The first stage uses clustering methods in order to segment the time series into its various contexts. The second stage makes use of support vector regressions (SVRs), one for each context, to forecast future values of the series. The series used in the experiments is composed of values of an equity fund of a Brazilian bank. The proposed model is compared to a hierarchical model (HM) presented in the literature. In this series, the HM presented prediction results superior to both a support vector machine (SVM) and a multilayer perceptron (MLP) models. The experiments show that the proposed model is superior to HM, reducing the forecasting error of the HM by 32%. This means that the proposed model is also superior to the SVM and MLP models. An analysis of the construction and use of clusters associated with a series volatility study shows that data obtained from only one type of volatility (low or high) are enough to provide sufficient knowledge to the model so that it is able to forecast future values with good accuracy. Another analysis on the quality of the clusters formed by the model shows that each cluster carries different information about the series. Furthermore, there is always a group of SVRs capable of making adequate forecasts and, for the most part, the SVR used in forecasting is a SVR belonging to this group.
引用
收藏
页码:743 / 773
页数:31
相关论文
共 50 条
  • [21] Inflation Forecasting Using Support Vector Regression
    Zhang, Linyun
    Li, Jinchang
    [J]. 2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 136 - 140
  • [22] Support Vector Machines through Financial Time Series Forecasting
    Kewat, Pooja
    Sharma, Roopesh
    Singh, Upendra
    Itare, Ravikant
    [J]. 2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, : 471 - 477
  • [23] Modified support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    [J]. NEUROCOMPUTING, 2002, 48 : 847 - 861
  • [24] ε-Descending Support Vector Machines for Financial Time Series Forecasting
    Francis E. H. Tay
    L. J. Cao
    [J]. Neural Processing Letters, 2002, 15 : 179 - 195
  • [25] Application of support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    [J]. OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (04): : 309 - 317
  • [26] ε-descending support vector machines for financial time series forecasting
    Tay, FEH
    Cao, LJ
    [J]. NEURAL PROCESSING LETTERS, 2002, 15 (02) : 179 - 195
  • [27] Time series forecasting by a seasonal support vector regression model
    Pai, Ping-Feng
    Lin, Kuo-Ping
    Lin, Chi-Shen
    Chang, Ping-Teng
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2010, 37 (06) : 4261 - 4265
  • [28] Financial Time Series Forecasting Using Hybridized Support Vector Machines and ARIMA Models
    Khairalla, Mergani A.
    Ning, Xu
    [J]. PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND APPLICATIONS (WCNA2017), 2017, : 94 - 98
  • [29] Local Support Vector Regression for financial time series prediction
    Huang, Kaizhu
    Yang, Haiqin
    King, Irwin
    Lyu, Michael R.
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1622 - 1627
  • [30] Time series forecasting method of building energy consumption using support vector regression
    Liu, Dandan
    Chen, Qijun
    Mori, Kazuyuki
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION, 2015, : 1628 - 1632