MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference

被引:28
|
作者
Goudie, Robert J. B. [1 ]
Turner, Rebecca M. [2 ]
De Angelis, Daniela [3 ]
Thomas, Andrew [1 ]
机构
[1] Univ Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
[2] UCL, London, England
[3] Univ Cambridge, Cambridge, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 95卷 / 07期
基金
英国医学研究理事会;
关键词
BUGS; parallel computing; Markov chain Monte Carlo; Gibbs sampling; Bayesian analysis; hierarchical models; directed acyclic graph; MONTE-CARLO METHODS; ALGORITHMS;
D O I
10.18637/jss.v095.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelizes evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelizes sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelize the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Proteochemometric modeling in a Bayesian framework
    Isidro Cortes-Ciriano
    Gerard JP van Westen
    Eelke Bart Lenselink
    Daniel S Murrell
    Andreas Bender
    Thérèse Malliavin
    Journal of Cheminformatics, 6
  • [32] Proteochemometric modeling in a Bayesian framework
    Cortes-Ciriano, Isidro
    van Westen, Gerard J. P.
    Lenselink, Eelke Bart
    Murrell, Daniel S.
    Bender, Andreas
    Malliavin, Therese
    JOURNAL OF CHEMINFORMATICS, 2014, 6
  • [33] Introduction to Bayesian Modeling and Inference for Fisheries Scientists
    Doll, Jason C.
    Jacquemin, Stephen J.
    FISHERIES, 2018, 43 (03) : 152 - 161
  • [34] Quantitative Bayesian inference by qualitative knowledge modeling
    Chang, Rui
    Stetter, Martin
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2562 - +
  • [35] An Improved Classification for Parallel Inference Framework with Hierarchy
    Liu, Hai Ying
    Li, Lei
    2009 THIRD INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL 1, PROCEEDINGS, 2009, : 314 - +
  • [36] Application of Bayesian Inference to Milling Force Modeling
    Karandikar, Jaydeep M.
    Schmitz, Tony L.
    Abbas, Ali E.
    JOURNAL OF MANUFACTURING SCIENCE AND ENGINEERING-TRANSACTIONS OF THE ASME, 2014, 136 (02):
  • [37] Some Bayesian biclustering methods: Modeling and inference
    Chakraborty, Abhishek
    Vardeman, Stephen B.
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (04) : 413 - 432
  • [38] Modeling and Inference with Relational Dynamic Bayesian Networks
    Manfredotti, Cristina
    ADVANCES IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5549 : 287 - +
  • [39] Inference and modeling of Multiply Sectioned Bayesian Networks
    Tian, FZ
    Zhang, HW
    Lu, YC
    Shi, CY
    2002 IEEE REGION 10 CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND POWER ENGINEERING, VOLS I-III, PROCEEDINGS, 2002, : 683 - 686
  • [40] Modeling residual hydrologic errors with Bayesian inference
    Smith, Tyler
    Marshall, Lucy
    Sharma, Ashish
    JOURNAL OF HYDROLOGY, 2015, 528 : 29 - 37