MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference

被引:28
|
作者
Goudie, Robert J. B. [1 ]
Turner, Rebecca M. [2 ]
De Angelis, Daniela [3 ]
Thomas, Andrew [1 ]
机构
[1] Univ Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
[2] UCL, London, England
[3] Univ Cambridge, Cambridge, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 95卷 / 07期
基金
英国医学研究理事会;
关键词
BUGS; parallel computing; Markov chain Monte Carlo; Gibbs sampling; Bayesian analysis; hierarchical models; directed acyclic graph; MONTE-CARLO METHODS; ALGORITHMS;
D O I
10.18637/jss.v095.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelizes evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelizes sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelize the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [1] Faster-BNI: Fast Parallel Exact Inference on Bayesian Networks
    Jiang, Jiantong
    Wen, Zeyi
    Mansoor, Atif
    Mian, Ajmal
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2024, 35 (08) : 1444 - 1455
  • [2] FrAMBI: A Software Framework for Auditory Modeling Based on Bayesian Inference
    Roberto Barumerli
    Piotr Majdak
    Neuroinformatics, 23 (2)
  • [3] Modeling and implementation of local volatility surfaces in Bayesian framework
    Animoku A.
    Uğur Ö.
    Yolcu-Okur Y.
    Computational Management Science, 2018, 15 (2) : 239 - 258
  • [4] Simulation-based bayesian inference using BUGS
    Ching-fan Sheu
    Suzanne L. O’Curry
    Behavior Research Methods, Instruments, & Computers, 1998, 30 : 232 - 237
  • [5] Simulation-based Bayesian inference using BUGS
    Sheu, CF
    O'Curry, SL
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 1998, 30 (02): : 232 - 237
  • [6] Scalable parallel implementation of Bayesian network to junction tree conversion for exact inference
    Namasivayam, Vasanth Krishna
    Pathak, Animesh
    Prasanna, Viktor K.
    SBAC-OAD 2006: 18TH INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, 2006, : 167 - +
  • [7] A Bayesian Framework for Nash Equilibrium Inference in Human-Robot Parallel Play
    Bansal, Shray
    Xu, Jin
    Howard, Ayanna
    Isbell, Charles
    ROBOTICS: SCIENCE AND SYSTEMS XVI, 2020,
  • [8] Parallel algorithms for Bayesian phylogenetic inference
    Feng, XZ
    Buell, DA
    Rose, JR
    Waddell, PJ
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2003, 63 (7-8) : 707 - 718
  • [9] Bayesian Inference for OPC Modeling
    Burbine, Andrew
    Sturtevant, John
    Fryer, David
    Smith, Bruce W.
    OPTICAL MICROLITHOGRAPHY XXIX, 2016, 9780
  • [10] Bayesian parametric inference in a nonparametric framework
    Walker, Stephen G.
    Gutierrez-Pena, Eduardo
    TEST, 2007, 16 (01) : 188 - 197