Surjectivity of mean value operators on noncompact symmetric spaces

被引:4
|
作者
Christensen, Jens [1 ]
Gonzalez, Fulton [2 ]
Kakehi, Tomoyuki [3 ]
机构
[1] Colgate Univ, Dept Math, Hamilton, NY 13346 USA
[2] Tufts Univ, Dept Math, Medford, MA 02155 USA
[3] Univ Tsukuba, Div Math, Tsukuba, Ibaraki 3058571, Japan
关键词
Mean value operators; Noncompact symmetric spaces; TRANSFORM; DIVISION; THEOREM;
D O I
10.1016/j.jfa.2016.12.022
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = G/K be a symmetric space of the noncompact type. We prove that the mean value operator over translated K-orbits of a fixed point is surjective on the space of smooth functions on X if X is either complex or of rank one. For higher rank spaces it is shown that the same statement is true for points in an appropriate Weyl subchamber. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3610 / 3646
页数:37
相关论文
共 50 条