Optimal and Autonomous Control Using Reinforcement Learning: A Survey

被引:539
|
作者
Kiumarsi, Bahare [1 ]
Vamvoudakis, Kyriakos G. [2 ]
Modares, Hamidreza [3 ]
Lewis, Frank L. [1 ,4 ]
机构
[1] Univ Texas Arlington, UTA Res Inst, Arlington, TX 76118 USA
[2] Virginia Tech, Kevin T Crofton Dept Aerosp & Ocean Engn, Blacksburg, VA 24061 USA
[3] Missouri Univ Sci & Technol, Dept Elect & Comp Engn, Rolla, MO 65401 USA
[4] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
基金
美国国家科学基金会;
关键词
Autonomy; data-based optimization; reinforcement learning (RL); DISCRETE-TIME-SYSTEMS; H-INFINITY CONTROL; OPTIMAL TRACKING CONTROL; ADAPTIVE OPTIMAL-CONTROL; APPROXIMATE OPTIMAL-CONTROL; ZERO-SUM GAMES; LINEAR-SYSTEMS; NONLINEAR-SYSTEMS; FEEDBACK; ALGORITHM;
D O I
10.1109/TNNLS.2017.2773458
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper reviews the current state of the art on reinforcement learning (RL)-based feedback control solutions to optimal regulation and tracking of single and multiagent systems. Existing RL solutions to both optimal H-2 and H-infinity control problems, as well as graphical games, will be reviewed. RL methods learn the solution to optimal control and game problems online and using measured data along the system trajectories. We discuss Q-learning and the integral RL algorithm as core algorithms for discrete-time (DT) and continuous-time (CT) systems, respectively. Moreover, we discuss a new direction of off-policy RL for both CT and DT systems. Finally, we review several applications.
引用
收藏
页码:2042 / 2062
页数:21
相关论文
共 50 条
  • [21] Autonomous Surface Vehicle Control Method Using Deep Reinforcement Learning
    Zhang, Shang
    Yang, Rui
    Chen, Zhen
    Li, Ming
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 1664 - 1668
  • [22] Autonomous Decentralized Control of Distribution Network Voltage using Reinforcement Learning
    Takayama, Satoshi
    Ishigame, Atsushi
    [J]. IFAC PAPERSONLINE, 2018, 51 (28): : 209 - 214
  • [23] Autonomous Grading Work Using Deep Reinforcement Learning Based Control
    Nakatani, Masayuki
    Sun, Zeyuan
    Uchimura, Yutaka
    [J]. IECON 2018 - 44TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2018, : 5068 - 5073
  • [24] Networked and Deep Reinforcement Learning-Based Control for Autonomous Marine Vehicles: A Survey
    Wang, Yu-Long
    Wang, Cheng-Cheng
    Han, Qing-Long
    Wang, Xiaofan
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2024, : 1 - 14
  • [25] Constrained adaptive optimal control using a reinforcement learning agent
    Lin, Wei-Song
    Zheng, Chen-Hong
    [J]. AUTOMATICA, 2012, 48 (10) : 2614 - 2619
  • [26] Optimal Balancing Control of Bipedal Robots Using Reinforcement Learning
    Peng, Fang
    Ding, Lijia
    Li, Zhijun
    Yang, Chenguang
    Su, Chun-Yi
    [J]. PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 2186 - 2191
  • [27] Exploring optimal control of epidemic spread using reinforcement learning
    Abu Quwsar Ohi
    M. F. Mridha
    Muhammad Mostafa Monowar
    Md. Abdul Hamid
    [J]. Scientific Reports, 10
  • [28] Exploring optimal control of epidemic spread using reinforcement learning
    Ohi, Abu Quwsar
    Mridha, M. F.
    Monowar, Muhammad Mostafa
    Hamid, Md. Abdul
    [J]. SCIENTIFIC REPORTS, 2020, 10 (01)
  • [29] Online Reinforcement Learning for Autonomous Sensor Control
    Ravier, Robert
    Garagic, Denis
    Peskoe, Jacob
    Galoppo, Travis
    Tigue, James
    Rhodes, Bradley J.
    Zulch, Peter
    [J]. 2023 IEEE AEROSPACE CONFERENCE, 2023,
  • [30] Hybrid reinforcement learning for autonomous UAV control
    Yoo, Jae Hyun
    [J]. Journal of Institute of Control, Robotics and Systems, 2019, 25 (06) : 546 - 550