Robust Multi-camera People Tracking Using Maximum Likelihood Estimation

被引:0
|
作者
Bo, Nyan Bo [1 ]
Van Hese, Peter [1 ]
Gruenwedel, Sebastian [1 ]
Guan, Junzhi [1 ]
Nino-Castaneda, Jorge [1 ]
Van Haerenborgh, Dirk [1 ]
Van Cauwelaert, Dimitri [1 ]
Veelaert, Peter [1 ]
Philips, Wilfried [1 ]
机构
[1] Univ Ghent, iMinds, B-9000 Ghent, Belgium
关键词
smart camera network; distributed computing; tracking; maximum likelihood estimation; data fusion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new method to track multiple persons reliably using a network of smart cameras. The task of tracking multiple persons is very challenging due to targets' non-rigid nature, occlusions and environmental changes. Our proposed method estimates the positions of persons in each smart camera using a maximum likelihood estimation and all estimates are merged in a fusion center to generate the final estimates. The performance of our proposed method is evaluated on indoor video sequences in which persons are often occluded by other persons and/or furniture. The results show that our method performs well with the total average tracking error as low as 10.2 cm. We also compared performance of our system to a state-of-the-art tracking system and find that our method outperforms in terms of both total average tracking error and total number of object loss.
引用
收藏
页码:584 / 595
页数:12
相关论文
共 50 条
  • [31] StitchRV: Multi-Camera Fiducial Tracking
    Wang, Sijie
    Bevans, Allen
    Antle, Alissa N.
    TEI 2010, 2010, : 287 - 290
  • [32] Robust Maximum Likelihood Estimation
    Bertsimas, Dimitris
    Nohadani, Omid
    INFORMS JOURNAL ON COMPUTING, 2019, 31 (03) : 445 - 458
  • [33] Robust, Extensible, and Fast: Teamed Classifiers for Vehicle Tracking in Multi-Camera Networks
    Suprem, Abhijit
    Lima, Rodrigo Alves
    Padilha, Bruno
    Ferreira, Joao Eduardo
    Pu, Calton
    2019 IEEE FIRST INTERNATIONAL CONFERENCE ON COGNITIVE MACHINE INTELLIGENCE (COGMI 2019), 2019, : 23 - 32
  • [34] Tracking in Sparse Multi-Camera Setups using Stereo Vision
    Englebienne, Gwenn
    van Oosterhout, Tim
    Krose, Ben
    2009 THIRD ACM/IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED SMART CAMERAS, 2009, : 322 - +
  • [35] Passive target tracking using maximum likelihood estimation
    Tao, XJ
    Zou, CR
    He, ZY
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 1996, 32 (04) : 1348 - 1354
  • [36] Passive target tracking using maximum likelihood estimation
    Southeast Univ, Nanjing, China
    IEEE Trans Aerosp Electron Syst, 4 (1348-1354):
  • [37] Deep Multi-Camera People Detection
    Chavdarova, Tatjana
    Fleuret, Francois
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 848 - 853
  • [38] Target Tracking Using Factor Graphs and Multi-Camera Systems
    Castaldo, Francesco
    Palmieri, Francesco A. N.
    IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (03) : 1950 - 1960
  • [39] Maximum Likelihood Estimation for Multiple Camera Target Tracking on Grassmann Tangent Subspace
    Amini-Omam, Mojtaba
    Torkamani-Azar, Farah
    Ghorashi, Seyed Ali
    IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 77 - 89
  • [40] Multi-camera People Localization and Height Estimation Using Multiple Birth-and-Death Dynamics
    Utasi, Akos
    Benedek, Csaba
    COMPUTER VISION - ACCV 2010 WORKSHOPS, PT I, 2011, 6468 : 74 - 83