Bioactive Poly(ethylene Glycol) Acrylate Hydrogels for Regenerative Engineering

被引:40
|
作者
Moore, E. M. [1 ]
West, J. L. [1 ]
机构
[1] Duke Univ, Dept Biomed Engn, Box 90281, Durham, NC 27708 USA
关键词
PEG; Tissue engineering; Hydrogels; Regenerative medicine; Biomimetic; Proteolytic degradation; Cell adhesion; RGD; Vascularization; EXTRACELLULAR-MATRIX; CELL-ADHESIVE; PEG HYDROGELS; STEM-CELLS; PHOTOINITIATED POLYMERIZATION; COVALENT IMMOBILIZATION; SYNTHETIC MATRIX; RGD; DIACRYLATE; PEPTIDES;
D O I
10.1007/s40883-018-0074-y
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Poly(ethylene glycol) (PEG)-based hydrogels have been used in regenerative engineering applications due to attributes such as the ability to encapsulate cells, control the presentation of bioactive ligands, and manipulate the mechanical properties of the hydrogels. PEG chains are highly hydrophilic, uncharged and possess high chain mobility. This allows resistance to protein adsorption, making PEG very bioinert. Certain derivatives, such as PEG diacrylate (PEGDA), can be crosslinked to form hydrogels under conditions mild enough to allow cell encapsulations. PEGDA hydrogels can also be manipulated to span a range of stiffnesses relevant to soft tissues. Additionally, PEG chains can easily be covalently modified with peptides and proteins to allow cell adhesion or provide intrinsic cues to cells within the PEG hydrogel. Among the extensive uses of PEG acrylate-based hydrogels for regenerative engineering purposes, this review will first focus on the formation of bioactive PEG-acrylate hydrogels and then highlight tissue engineering applications of PEGDA-based hydrogels, with specific examples for cartilage tissue engineering, bone tissue engineering, vasculogenesis, liver tissue engineering, cardiac tissue engineeringand the development of tumor models.Lay SummaryRegenerative engineering seeks to combine materials with cells to generate new tissues outside of the body. In order to interact with cells and support the formation of tissues, the materials must be rendered biologically active and adopt certain characteristics of the native tissue environment. This review focuses on poly(ethylene glycol) (PEG) acrylate materials for regenerative engineering purposes. PEG acrylate-based materials are easily modified to be biologically active and are capable of mimicking a range of characteristics of the native tissue environment. These PEG materials have supported the formation cartilage tissues, bone tissues, blood vessels, liver tissues, cardiac tissues and tumor models. Future work will apply these results to the continued modifications of PEG-acrylate materials to generate more complex tissues. Specifically, the ability to mimic transient characteristics of native tissue microenvironments and the relevance of cell types in each tissue generated will need to be investagted within the PEG acylate materials.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 50 条
  • [21] Effect of poly(ethylene glycol) molecular weight on tensile and swelling properties of oligo(poly(ethylene glycol) fumarate) hydrogels for cartilage tissue engineering
    Temenoff, JS
    Athanasiou, KA
    LeBaron, RG
    Mikos, AG
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (03): : 429 - 437
  • [22] Micropatterning of Poly(ethylene glycol) Diacrylate Hydrogels
    Ali, Saniya
    Cuchiara, Maude L.
    West, Jennifer L.
    MICROPATTERNING IN CELL BIOLOGY, PT C, 2014, 121 : 105 - +
  • [23] Bioactive poly(ethylene glycol) hydrogels to recapitulate the HSC niche and facilitate HSC expansion in culture
    Cuchiara, Maude L.
    Coskun, Sueleyman
    Banda, Omar A.
    Horter, Kelsey L.
    Hirschi, Karen K.
    West, Jennifer L.
    BIOTECHNOLOGY AND BIOENGINEERING, 2016, 113 (04) : 870 - 881
  • [24] Bioactive Nanocomposite Poly (Ethylene Glycol) Hydrogels Crosslinked by Multifunctional Layered Double Hydroxides Nanocrosslinkers
    Huang, Heqin
    Xu, Jianbin
    Wei, Kongchang
    Xu, Yang J.
    Choi, Chun Kit K.
    Zhu, Meiling
    Bian, Liming
    MACROMOLECULAR BIOSCIENCE, 2016, 16 (07) : 1019 - 1026
  • [25] Three-dimensional photolithographic patterning of multiple bioactive ligands in poly(ethylene glycol) hydrogels
    Hoffmann, Joseph C.
    West, Jennifer L.
    SOFT MATTER, 2010, 6 (20) : 5056 - 5063
  • [26] Chitosan Grafted Poly (Ethylene Glycol) Methyl Ether Acrylate Particulate Hydrogels for Drug Delivery Applications
    Logigan, Corina
    Delaite, Christelle
    Tiron, Crina-Elena
    Peptu, Cristian
    Popa, Marcel
    Peptu, Catalina Anisoara
    GELS, 2022, 8 (08)
  • [27] Poly(ethylene glycol) Hydrogels with Tailorable Surface and Mechanical Properties for Tissue Engineering Applications
    Patel, Nehal R.
    Whitehead, Anna K.
    Newman, Jamie J.
    Caldorera-Moore, Mary E.
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2017, 3 (08): : 1494 - 1498
  • [28] Fabrication of tough poly(ethylene glycol)/collagen double network hydrogels for tissue engineering
    Chen, Jing-Xiao
    Yuan, Jing
    Wu, Ya-Ling
    Wang, Ping
    Zhao, Peng
    Lv, Guo-Zhong
    Chen, Jing-Hua
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (01) : 192 - 200
  • [29] Synthesis and characterization of macroporous poly(ethylene glycol)-based hydrogels for tissue engineering application
    Sannino, A.
    Netti, P. A.
    Madaghiele, M.
    Coccoli, V.
    Luciani, A.
    Maffezzoli, A.
    NicolaiS, L.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2006, 79A (02) : 229 - 236
  • [30] Synthesis and characterization of poly(ethylene glycol) dimethacrylate hydrogels
    Lin-Gibson, S
    Bencherif, S
    Antonucci, JM
    Jones, RL
    Horkay, F
    MACROMOLECULAR SYMPOSIA, 2005, 227 : 243 - 254