Uniqueness for a one-dimensional inverse parabolic problem

被引:2
|
作者
Elayyan, A [1 ]
机构
[1] Birzeit Univ, Dept Math, Birzeit, West Bank, Israel
关键词
D O I
10.1088/0266-5611/15/5/312
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the uniqueness of a discontinuous principal coefficient of a one-dimensional second-order parabolic equation of the form a(0) + chi(Q*)b with known smooth an and unknown b = b(x) from all possible lateral boundary measurements of solutions of this equation. In the proofs we make use of singular solutions of parabolic equations.
引用
收藏
页码:1283 / 1294
页数:12
相关论文
共 50 条
  • [21] NONUNIQUENESS IN THE ONE-DIMENSIONAL INVERSE SCATTERING PROBLEM
    AKTOSUN, T
    NEWTON, RG
    INVERSE PROBLEMS, 1985, 1 (04) : 291 - 300
  • [22] THE ONE-DIMENSIONAL INVERSE PROBLEM OF REFLECTION SEISMOLOGY
    BUBE, KP
    BURRIDGE, R
    SIAM REVIEW, 1983, 25 (04) : 497 - 559
  • [23] One-Dimensional Inverse Scattering Problem in Acoustics
    Demetrios Gerogiannis
    Sofianos Antoniou Sofianos
    Isaac Elias Lagaris
    Georgios Antomiou Evangelakis
    Brazilian Journal of Physics, 2011, 41 : 248 - 257
  • [24] Solving an inverse problem in one-dimensional diffusion
    Tempo, Ruth
    Rujano, Jose
    Torres-Monzon, Carlos
    CIENCIA E INGENIERIA, 2012, 33 (03): : 137 - 145
  • [25] INVERSE PROBLEM FOR ONE-DIMENSIONAL SINGULAR OSCILLATOR
    GOSTEV, VB
    FRENKIN, AR
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 3 FIZIKA ASTRONOMIYA, 1992, 33 (01): : 7 - 11
  • [26] INVERSE PROBLEM FOR ONE-DIMENSIONAL WAVE EQUATION
    GERVER, ML
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1970, 21 (3-4): : 337 - &
  • [27] AN ONE-DIMENSIONAL INVERSE PROBLEM FOR THE WAVE EQUATION
    Romanov, V. G.
    Bugueva, T. V.
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2024, 12 (03): : 135 - 162
  • [28] SOLUTION OF THE VSP ONE-DIMENSIONAL INVERSE PROBLEM
    MACE, D
    LAILLY, P
    GEOPHYSICAL PROSPECTING, 1986, 34 (07) : 1002 - 1021
  • [29] Finding a control parameter in a one-dimensional parabolic inverse problem by using the Bernstein Galerkin method
    Yousefi, S. A.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (06) : 821 - 828
  • [30] Approximate inverse for a one-dimensional inverse heat conduction problem
    Jonas, P
    Louis, AK
    INVERSE PROBLEMS, 2000, 16 (01) : 175 - 185