Realization of frobenius manifolds as submanifolds in pseudo-Euclidean spaces

被引:0
|
作者
Mokhov, O. I. [1 ,2 ]
机构
[1] Russian Acad Sci, LD Landau Theoret Phys Inst, Ctr Nonlinear Studies, Moscow 119334, Russia
[2] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Geometry & Topol, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
NONLOCAL HAMILTONIAN OPERATORS; ASSOCIATIVITY EQUATIONS; HYDRODYNAMIC TYPE; POISSON STRUCTURES; FLAT METRICS; SURFACES; ALGEBRAS; GEOMETRY; SYSTEMS;
D O I
10.1134/S008154380904018X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a class of k-potential submanifolds in pseudo-Euclidean spaces and prove that for an arbitrary positive integer k and an arbitrary nonnegative integer p, each N-dimensional Frobenius manifold can always be locally realized as an N-dimensional k-potential submanifold in ((k + 1)N + p)-dimensional pseudo-Euclidean spaces of certain signatures. For k = 1 this construction was proposed by the present author in a previous paper (2006). The realization of concrete Frobenius manifolds is reduced to solving a consistent linear system of second-order partial differential equations.
引用
收藏
页码:217 / 234
页数:18
相关论文
共 50 条
  • [21] The minimality of biharmonic hypersurfaces in pseudo-Euclidean spaces
    Du, Li
    Yuan, Xiaoqin
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1587 - 1595
  • [23] A LOOP GROUP FORMULATION FOR CONSTANT CURVATURE SUBMANIFOLDS OF PSEUDO-EUCLIDEAN SPACE
    Brander, David
    Rossman, Wayne
    TAIWANESE JOURNAL OF MATHEMATICS, 2008, 12 (07): : 1739 - 1749
  • [24] Generalized Yamabe solitons on hypersurfaces in pseudo-Euclidean spaces
    Demirci, Burcu Bektas
    Fujii, Shunya
    Maeta, Shun
    JOURNAL OF GEOMETRY, 2024, 115 (01)
  • [25] Ellipsoidal billiards in pseudo-Euclidean spaces and relativistic quadrics
    Dragovic, Vladimir
    Radnovic, Milena
    ADVANCES IN MATHEMATICS, 2012, 231 (3-4) : 1173 - 1201
  • [26] MAPS OF PSEUDO-EUCLIDEAN SPACES PRESERVING ISOTROPICITY OF VECTORS
    ASTRAKOV, SN
    SIBERIAN MATHEMATICAL JOURNAL, 1990, 31 (01) : 10 - 20
  • [27] PURE ROLLING MOTION OF HYPERQUADRICS IN PSEUDO-EUCLIDEAN SPACES
    Marques, Andre
    Leite, Fatima Silva
    JOURNAL OF GEOMETRIC MECHANICS, 2022, 14 (01): : 105 - 129
  • [28] Principal angles in pseudo-euclidean spaces of index 1
    Rodriguez, Jose L. Vilca
    Brandao, Tauan L. A.
    Batista, Victor M. O.
    LINEAR & MULTILINEAR ALGEBRA, 2024, 72 (05): : 787 - 811
  • [29] ON THE GEOMETRY INDUCED BY LORENTZ TRANSFORMATIONS IN PSEUDO-EUCLIDEAN SPACES
    Ungar, Abraham A.
    PROCEEDINGS OF THE SEVENTEENTH INTERNATIONAL CONFERENCE ON GEOMETRY, INTEGRABILITY AND QUANTIZATION, 2016, : 360 - 368
  • [30] On the Ricci and Einstein equations on the pseudo-euclidean and hyperbolic spaces
    Pina, R
    Tenenblat, K
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2006, 24 (02) : 101 - 107