REFINED MULTIDIMENSIONAL HARDY-TYPE INEQUALITIES VIA SUPERQUADRACITY

被引:10
|
作者
Oguntuase, J. A. [2 ]
Persson, L. -E. [1 ]
Essel, E. K. [3 ]
Popoola, B. A. [4 ]
机构
[1] Lulea Univ Technol, Dept Math, SE-97187 Lulea, Sweden
[2] Univ Agr, Dept Math, Abeokuta, Ogun State, Nigeria
[3] Univ Cape Coast, Dept Math & Stat, Cape Coast, Ghana
[4] Fed Coll Educ, Dept Math & Stat, Abeokuta, Ogun State, Nigeria
来源
关键词
Multidimensional Hardy-type inequalities; refined Hardy's inequalities; dual inequalities; superquadratic functions; subquadratic functions;
D O I
10.15352/bjma/1240336299
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Some new refined multidimensional Hardy-type inequalities for p <= 2 and their duals are derived and discussed. Moreover, these inequalities hold in the reversed direction when 1 < p <= 2. The results obtained are based mainly on some new results for superquadratic and subquadratic functions. In particular, our results further extend the recent results in [J.A. Oguntuase and L.-E. Persson, Refinement of Hardy's inequalities via superquadratic and subquadratic functions, J. Math. Anal. Appl., 339 (2008), no. 2, 1305- 1312] to a multidimensional setting.
引用
收藏
页码:129 / 139
页数:11
相关论文
共 50 条
  • [41] On a scale of Hardy-type integral inequalities
    Dubinskii, Yu. A.
    DOKLADY MATHEMATICS, 2010, 81 (01) : 111 - 114
  • [42] On a new class of Hardy-type inequalities
    EO Adeleke
    A Čižmešija
    JA Oguntuase
    L-E Persson
    D Pokaz
    Journal of Inequalities and Applications, 2012
  • [43] The Optimal Constant in Hardy-type Inequalities
    Mu-Fa CHEN
    Acta Mathematica Sinica, 2015, 31 (05) : 731 - 754
  • [44] New Hardy-type integral inequalities
    Manna, Atanu
    ACTA SCIENTIARUM MATHEMATICARUM, 2020, 86 (3-4): : 467 - 491
  • [45] ITERATED DISCRETE HARDY-TYPE INEQUALITIES
    Zhangabergenova, N.
    Temirkhanova, A.
    EURASIAN MATHEMATICAL JOURNAL, 2023, 14 (01): : 81 - 95
  • [46] On a scale of Hardy-type integral inequalities
    Yu. A. Dubinskii
    Doklady Mathematics, 2010, 81 : 111 - 114
  • [47] A new approach to Hardy-type inequalities
    Adam Osȩkowski
    Archiv der Mathematik, 2015, 104 : 165 - 176
  • [48] On weighted iterated Hardy-type inequalities
    Rza Mustafayev
    Positivity, 2018, 22 : 275 - 299
  • [49] On weighted iterated Hardy-type inequalities
    Mustafayev, Rza
    POSITIVITY, 2018, 22 (01) : 275 - 299
  • [50] Hardy-type Inequalities for Convex Functions
    Anthonio, Y. O.
    Rauf, K.
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (01): : 263 - 271