Low-rank tensor completion via combined non-local self-similarity and low-rank regularization

被引:38
|
作者
Li, Xiao-Tong [1 ]
Zhao, Xi-Le [1 ]
Jiang, Tai-Xiang [1 ]
Zheng, Yu-Bang [1 ]
Ji, Teng-Yu [2 ]
Huang, Ting-Zhu [1 ]
机构
[1] Univ Elect Sci & Technol China, Res Ctr Image & Vis Comp, Sch Math Sci, Chengdu 611731, Sichuan, Peoples R China
[2] Northwestern Polytech Univ, Sch Sci, Xian 710072, Shaanxi, Peoples R China
关键词
Low-rank tensor completion; Parallel low-rank matrix factorization; Non-local self-similarity; Plug and Play; Block successive upper-bound minimization; THRESHOLDING ALGORITHM; MATRIX FACTORIZATION; MODEL; PENALIZATION; SPARSITY; IMAGES;
D O I
10.1016/j.neucom.2019.07.092
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Global low-rank methods have achieved great successes in tensor completion. However, these methods neglected the abundant non-local self-similarities, which exist in a wide range of multi-dimensional imaging data. To integrate the global and non-local property of the underlying tensor, we propose a novel low-rank tensor completion model via combined non-local self-similarity and low-rank regularization, which is named as NLS-LR. We adopt the parallel low-rank matrix factorization to guarantee the global low-rankness while plugging in non-local based denoisers to promote the non-local self-similarity instead of tailoring regularizers. To tackle the proposed model, we develop an efficient block successive upper-bound minimization (BSUM) based algorithm. Numerical experiment results demonstrate that the proposed method outperforms many state-of-the-art tensor completion methods in terms of quality metrics and visual effects. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [31] Low-rank tensor completion via smooth matrix factorization
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Ji, Teng-Yu
    Zhao, Xi-Le
    Jiang, Tai-Xiang
    Ma, Tian-Hui
    APPLIED MATHEMATICAL MODELLING, 2019, 70 : 677 - 695
  • [32] Noninvasive electrocardiographic imaging with low-rank and non-local total variation regularization
    Mu, Lide
    Liu, Huafeng
    PATTERN RECOGNITION LETTERS, 2020, 138 : 106 - 114
  • [33] Robust low-rank tensor completion via transformed tensor nuclear norm with total variation regularization
    Qiu, Duo
    Bai, Minru
    Ng, Michael K.
    Zhang, Xiongjun
    NEUROCOMPUTING, 2021, 435 : 197 - 215
  • [34] A Non-Local Low-Rank Approach to Enforce Integrability
    Badri, Hicham
    Yahia, Hussein
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (08) : 3562 - 3571
  • [35] Low-rank tensor completion via combined Tucker and Tensor Train for color image recovery
    Tianheng Zhang
    Jianli Zhao
    Qiuxia Sun
    Bin Zhang
    Jianjian Chen
    Maoguo Gong
    Applied Intelligence, 2022, 52 : 7761 - 7776
  • [36] Low-rank tensor completion via combined Tucker and Tensor Train for color image recovery
    Zhang, Tianheng
    Zhao, Jianli
    Sun, Qiuxia
    Zhang, Bin
    Chen, Jianjian
    Gong, Maoguo
    APPLIED INTELLIGENCE, 2022, 52 (07) : 7761 - 7776
  • [37] Multichannel Image Completion With Mixture Noise: Adaptive Sparse Low-Rank Tensor Subspace Meets Nonlocal Self-Similarity
    Xie, Mengying
    Liu, Xiaolan
    Yang, Xiaowei
    Cai, Wenzeng
    IEEE TRANSACTIONS ON CYBERNETICS, 2023, 53 (12) : 7521 - 7534
  • [38] A LOW-RANK TENSOR REGULARIZATION STRATEGY FOR HYPERSPECTRAL UNMIXING
    Imbiriba, Tales
    Borsoi, Ricardo Augusto
    Moreira Bermudez, Jose Carlos
    2018 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2018, : 373 - 377
  • [39] A Weighted Tensor Factorization Method for Low-rank Tensor Completion
    Cheng, Miaomiao
    Jing, Liping
    Ng, Michael K.
    2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 30 - 38
  • [40] Attention-Guided Low-Rank Tensor Completion
    Truong Thanh Nhat Mai
    Lam, Edmund Y.
    Lee, Chul
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9818 - 9833