Super-Resolution Land Cover Mapping Based on the Convolutional Neural Network

被引:27
|
作者
Jia, Yuanxin [1 ,2 ]
Ge, Yong [1 ,2 ]
Chen, Yuehong [3 ]
Li, Sanping [4 ]
Heuvelink, Gerard B. M. [5 ]
Ling, Feng [6 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, State Key Lab Resources & Environm Informat Syst, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Hohai Univ, Sch Earth Sci & Engn, Nanjing 210098, Jiangsu, Peoples R China
[4] DELLEMC CTO TRIGr, Beijing 100084, Peoples R China
[5] Wageningen Univ, Soil Geog & Landscape Grp, POB 47, NL-6700 AA Wageningen, Netherlands
[6] Chinese Acad Sci, Inst Geodesy & Geophys, Wuhan 430077, Hubei, Peoples R China
基金
美国国家科学基金会;
关键词
super-resolution mapping; land cover; convolutional neural network; remote sensing imagery; PIXEL-SWAPPING ALGORITHM; REMOTELY-SENSED IMAGES; SCENE CLASSIFICATION; SENTINEL-2; IMAGES; INFORMATION; MULTISCALE; SERIES;
D O I
10.3390/rs11151815
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Super-resolution mapping (SRM) is used to obtain fine-scale land cover maps from coarse remote sensing images. Spatial attraction, geostatistics, and using prior geographic information are conventional approaches used to derive fine-scale land cover maps. As the convolutional neural network (CNN) has been shown to be effective in capturing the spatial characteristics of geographic objects and extrapolating calibrated methods to other study areas, it may be a useful approach to overcome limitations of current SRM methods. In this paper, a new SRM method based on the CNN (SRMCNN) is proposed and tested. Specifically, an encoder-decoder CNN is used to model the nonlinear relationship between coarse remote sensing images and fine-scale land cover maps. Two real-image experiments were conducted to analyze the effectiveness of the proposed method. The results demonstrate that the overall accuracy of the proposed SRMCNN method was 3% to 5% higher than that of two existing SRM methods. Moreover, the proposed SRMCNN method was validated by visualizing output features and analyzing the performance of different geographic objects.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Super-resolution reconstruction of remote sensing images based on convolutional neural network
    Tian, Yu
    Jia, Rui-Sheng
    Xu, Shao-Hua
    Hua, Rong
    Deng, Meng-Di
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (04)
  • [42] Convolutional Neural Network-Based Video Super-Resolution for Action Recognition
    Zhang, Haochen
    Liu, Dong
    Xiong, Zhiwei
    PROCEEDINGS 2018 13TH IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC FACE & GESTURE RECOGNITION (FG 2018), 2018, : 746 - 750
  • [43] Diffused Convolutional Neural Network for Hyperspectral Image Super-Resolution
    Jia, Sen
    Zhu, Shuangzhao
    Wang, Zhihao
    Xu, Meng
    Wang, Weixi
    Guo, Yujuan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [44] Improvement of a Subpixel Convolutional Neural Network for a Super-Resolution Image
    Agalday, Muhammed Fatih
    Cinar, Ahmet
    APPLIED SCIENCES-BASEL, 2025, 15 (05):
  • [45] Super-Resolution Image Restoration Using Convolutional Neural Network
    Yu, Nedzelskyi O.
    Lashchevska, N. O.
    VISNYK NTUU KPI SERIIA-RADIOTEKHNIKA RADIOAPARATOBUDUVANNIA, 2023, (91): : 79 - 86
  • [46] HYPERSPECTRAL IMAGE SUPER-RESOLUTION VIA CONVOLUTIONAL NEURAL NETWORK
    Mei, Shaohui
    Yuan, Xin
    Ji, Jingyu
    Wan, Shuai
    Hou, Junhui
    Du, Qian
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4297 - 4301
  • [47] Convolutional Neural Network with Gradient Information for Image Super-Resolution
    Tang, Yinggan
    Zhu, Xiaoning
    Cui, Mingyong
    2016 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2016, : 1714 - 1719
  • [48] A Dual-Scale Convolutional Neural Network for Super-Resolution
    Liu, Jing
    He, Shuai
    Xue, Yuxin
    Zhang, Xiaoyan
    THIRTEENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2021), 2021, 11878
  • [49] HYPERSPECTRAL SUPER-RESOLUTION BY UNSUPERVISED CONVOLUTIONAL NEURAL NETWORK AND SURE
    Nguyen, Han V.
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    Mura, Mauro Dalla
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 903 - 906
  • [50] A Deep Convolutional Neural Network with Selection Units for Super-Resolution
    Choi, Jae-Seok
    Kim, Munchurl
    2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 1150 - 1156