Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy

被引:33
|
作者
Oliveira-Folador, Gabrieli [1 ,2 ,3 ]
Bicudo, Milene de Oliveira [1 ]
de Andrade, Eriel Forville [1 ]
Renard, Catherine Marie-Genevieve Claire [2 ]
Bureau, Sylvie [2 ]
de Castilhos, Fernanda [1 ,4 ]
机构
[1] UFPR, Grad Program Food Engn, BR-81531980 Curitiba, Parana, Brazil
[2] Univ Avignon, INRA, SQPOV, UMR408, F-84000 Avignon, France
[3] Rondonia Fed Univ UNIR, Dept Food Engn, Av Tancredo Neves,3450 Setor Inst, BR-76872848 Ariquemes, Rondonia, Brazil
[4] Santa Maria Fed Univ UFSM, Dept Chem Engn, Av Roraima 1000, BR-97105900 Santa Maria, RS, Brazil
关键词
Near-infrared; Mid-infrared; Chemometrics; Quality parameters; NEAR-INFRARED SPECTROSCOPY; INTERNAL QUALITY; ORGANIC-ACIDS; NONDESTRUCTIVE MEASUREMENT; SOLUBLE SOLIDS; APPLE JUICE; SUGARS; QUANTIFICATION; CAROTENOIDS; CALIBRATION;
D O I
10.1016/j.lwt.2018.04.078
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Near (NIR) and Mid (MIR) infrared spectroscopy were investigated as rapid methods for evaluating quality traits of fresh passion fruit pulp. Models to predict soluble solids content (SSC), titratable acidity (TA), glucose (GLC), fructose (FRU), sucrose (SUC) and vitamin C (ascorbic acid) were developed using linear partial least square (PLS) regression analysis. The PLS models in MIR provided better prediction results than in NIR. Prediction models in MIR were better for SSC (R-v(2) = 0.95), TA (R-v(2) = 0.86), glucose (R-v(2) = 0.93), fructose (R-v(2) = 0.84) and sucrose (R-v(2) = 0,74). However, due to its low level in pulp, ascorbic acid was not satisfactorily predicted either by NIR or MIR.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 50 条
  • [21] Maturity prediction of papaya using NIR spectroscopy
    Purwanto, Y. A.
    Pandjahitan, P. M.
    Sutrisno
    Darmawati, E.
    Makino, Y.
    Oshita, S.
    III ASIA PACIFIC SYMPOSIUM ON POSTHARVEST RESEARCH, EDUCATION AND EXTENSION: APS2014, 2018, 1213 : 447 - 452
  • [22] Wood shrinkage prediction using NIR spectroscopy
    Taylor, Adam M.
    Baek, Seung H.
    Jeong, Myong K.
    Nix, Gene
    WOOD AND FIBER SCIENCE, 2008, 40 (02): : 301 - 307
  • [23] Non-destructive detection of two cucumber cultivars fruit quality using NIR Spectroscopy
    Kusumiyati
    Hamdani, J.S.
    Sutari, W.
    Mubarok, S.
    Kurniasari, I.
    IOP Conference Series: Earth and Environmental Science, 2020, 583 (01)
  • [24] Non-destructive detection of two cucumber cultivars fruit quality using NIR Spectroscopy
    Kusumiyati
    Hamdani, J. S.
    Sutari, W.
    Mubarok, S.
    Kurniasari, I
    AGRIFOOD SYSTEM TOWARDS AGRICULTURE 4.0 AND DELIVERY OF SUSTAINABLE DEVELOPMENTS GOALS, 2020, 583
  • [25] Use of NIR spectroscopy and multivariate regression for prediction of pentosan content in wood pulp
    Marquez, Katherine
    Jimenez-Aspee, Felipe
    Marquez, Nicole
    Salgado, Pablo
    Contreras, David
    EUROPEAN JOURNAL OF WOOD AND WOOD PRODUCTS, 2023, 81 (02) : 547 - 555
  • [26] Use of NIR spectroscopy and multivariate regression for prediction of pentosan content in wood pulp
    Katherine Márquez
    Felipe Jiménez-Aspee
    Nicole Márquez
    Pablo Salgado
    David Contreras
    European Journal of Wood and Wood Products, 2023, 81 : 547 - 555
  • [27] Oil quality of passion fruit seeds subjected to a pulp-waste purification process
    Regis, Suelen Alvarenga
    de Resende, Eder Dutra
    Antoniassi, Rosemar
    CIENCIA RURAL, 2015, 45 (06): : 977 - 984
  • [28] Prediction of some internal quality parameters of apricot using FT-NIR spectroscopy
    M. Burak Buyukcan
    Ismail Kavdir
    Journal of Food Measurement and Characterization, 2017, 11 : 651 - 659
  • [29] Prediction of olive quality using FT-NIR spectroscopy in reflectance and transmittance modes
    Kavdir, Ismail
    Buyukcan, M. Burak
    Lu, Renfu
    Kocabiyik, Habib
    Seker, Murat
    BIOSYSTEMS ENGINEERING, 2009, 103 (03) : 304 - 312
  • [30] Prediction of some internal quality parameters of apricot using FT-NIR spectroscopy
    Buyukcan, M. Burak
    Kavdir, Ismail
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2017, 11 (02) : 651 - 659