Detection of four regulated grapevine viruses in a qualitative, single tube real-time PCR with melting curve analysis

被引:10
|
作者
Aloisio, M. [1 ,2 ]
Morelli, M. [3 ]
Elicio, V. [4 ]
Saldarelli, P. [3 ]
Ura, B. [2 ]
Bortot, B. [2 ]
Severini, G. M. [2 ]
Minafra, A. [3 ]
机构
[1] Univ Trieste, Dept Life Sci, Trieste, Italy
[2] IRCCS Burlo Garofolo, Inst Maternal & Child Hlth, Trieste, Italy
[3] Inst Sustainable Plant Protect, Bari, Italy
[4] Agritest Srl, Valenzano, Italy
关键词
Multiplex Real-time PCR; Melting curve; EvaGreen; Grapevine; Viruses; POLYMERASE CHAIN-REACTION; MULTIPLEX RT-PCR; SYBR GREEN; RAPID DETECTION; ASSAY; DIFFERENTIATION; VALIDATION; EVAGREEN; TYPE-2;
D O I
10.1016/j.jviromet.2018.04.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The detection of the four grapevine viruses (GLRaV-1, GLRaV-3, GFLV and ArMV) regulated in European Union plant material certification, requires sensitive and specific diagnostic tools. A strategy of simultaneous detection in a real-time single tube amplification was developed, based on the EvaGreen binding dye. The melting curve analysis (MCA) of the amplicons allows a qualitative detection of the four different virus targets in multiplex analysis. A plasmid dilution assay calculated an analytical sensitivity with an amplification threshold up to 100 copies of the target sequences. A small cohort of field grapevine samples, with a known status of infection by mixtures of the target viruses or free of them, respectively, was successfully tested for the evaluation of the amplicons Tm.
引用
收藏
页码:42 / 47
页数:6
相关论文
共 50 条
  • [21] Application of real-time PCR and melting curve analysis in rapid detection of Ael and Bel blood types
    Chen, DP
    Tseng, CP
    Lin, HT
    Sun, CF
    ANNALS OF CLINICAL AND LABORATORY SCIENCE, 2005, 35 (01): : 25 - 30
  • [22] Rapid detection and differentiation of Newcastle disease virus by real-time PCR with melting-curve analysis
    H. M. Pham
    S. Konnai
    T. Usui
    K. S. Chang
    S. Murata
    M. Mase
    K. Ohashi
    M. Onuma
    Archives of Virology, 2005, 150 : 2429 - 2438
  • [23] Detection of diarrheagenic Escherichia coli by use of melting-curve analysis and real-time multiplex PCR
    Guion, Chase E.
    Ochoa, Theresa J.
    Walker, Christopher M.
    Barletta, Francesca
    Cleary, Thomas G.
    JOURNAL OF CLINICAL MICROBIOLOGY, 2008, 46 (05) : 1752 - 1757
  • [24] Rapid detection and differentiation of Newcastle disease virus by real-time PCR with melting-curve analysis
    Pham, HM
    Konnai, S
    Usui, T
    Chang, KS
    Murata, S
    Mase, M
    Ohashi, K
    Onuma, M
    ARCHIVES OF VIROLOGY, 2005, 150 (12) : 2429 - 2438
  • [25] Rapid detection of hepatitis B virus mutations using real-time PCR and melting curve analysis
    Zhang, M
    Gong, YW
    Osiowy, C
    Minuk, GY
    HEPATOLOGY, 2002, 36 (03) : 723 - 728
  • [26] Decoding DNA labels by melting curve analysis using real-time PCR
    Balog, Jozsef A.
    Feher, Liliana Z.
    Puskas, Laszlo G.
    BIOTECHNIQUES, 2017, 63 (06) : 261 - 266
  • [27] A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus
    Peiyan He
    Henghui Wang
    Jianyong Luo
    Yong Yan
    Zhongwen Chen
    Current Microbiology, 2018, 75 : 1206 - 1213
  • [28] A Real-Time PCR with Melting Curve Analysis for Molecular Typing of Vibrio parahaemolyticus
    He, Peiyan
    Wang, Henghui
    Luo, Jianyong
    Yan, Yong
    Chen, Zhongwen
    CURRENT MICROBIOLOGY, 2018, 75 (09) : 1206 - 1213
  • [29] Simultaneous detection of Brazilian isolates of grapevine viruses by TaqMan real-time RT-PCR
    Dubiela, Carla R.
    Fajardo, Thor V. M.
    Souto, Eliezer R.
    Nickel, Osmar
    Eiras, Marcelo
    Revers, Luis Fernando
    TROPICAL PLANT PATHOLOGY, 2013, 38 (02): : 158 - 165
  • [30] Real-time multiplex RT-PCR for the simultaneous detection of the five main grapevine viruses
    Lopez-Fabuel, Irene
    Wetzel, Thierry
    Bertolini, Edson
    Bassler, Alexandra
    Vidal, Eduardo
    Torres, Luis B.
    Yuste, Alberto
    Olmos, Antonio
    JOURNAL OF VIROLOGICAL METHODS, 2013, 188 (1-2) : 21 - 24