Dynamic behaviors of reinforced NSC and UHPC columns protected by aluminum foam layer against low-velocity impact

被引:24
|
作者
Xu, Shenchun [1 ]
Liu, Zhongxian [2 ]
Li, Jun [3 ]
Yang, Yekai [4 ]
Wu, Chengqing [1 ,3 ]
机构
[1] Guangzhou Univ, Protect Struct Ctr, Sch Civil Engn, Guangzhou 510006, Peoples R China
[2] Tianjin Chengjian Univ, Tianjin Key Lab Civil Struct Protect & Reinforcem, Tianjin 300384, Peoples R China
[3] Univ Technol Sydney, Ctr Built Infrastruct Res, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
[4] Tianjin Univ, Sch Civil Engn, Tianjin 300372, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
R-NSC and R-UHPC columns; Aluminum foam; Low-velocity impact; Experimental and numerical investigations; COMPRESSIVE STRENGTH PROPERTIES; CIRCULAR RC COLUMNS; STEEL TUBE COLUMNS; ENERGY-ABSORPTION; BLAST RESISTANCE; CONCRETE BEAM; PART II; MODEL; STRAIN; PREDICTION;
D O I
10.1016/j.jobe.2020.101910
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Two strategies were proposed in this study to improve the safety of RC columns under low-velocity impact loading. One is setting up the protective closed-cell aluminum foam (CCAF) layer on the surfaces of RC columns for general structures, and the other one is utilizing the combination of the CCAF layer and UHPC for important structures. For verifying the effectiveness of these two strategies, both experimental and numerical investigations on the dynamic behaviors of reinforced normal strength concrete (R-NSC) and ultra-high-performance concrete (R-UHPC) columns protected by the CCAF layer against low-velocity impact were presented in this study. Two R-NSC columns and two R-UHPC columns were tested by the free-falling drop-weight system. The failure modes, failure process, time history of impact force and deflection were discussed in detail. Moreover, a 3D finite element model was developed to further investigate the impact dynamic behaviors of R-NSC columns and R-UHPC columns protected by the CCAF layer. The test results demonstrated that the CCAF layer can protect both R-NSC columns and R-UHPC columns effectively by reducing the impact force and absorbing a large amount of impact energy. Correspondingly, the safety of RC columns was also effectively improved since the impact force between the target and the impactor was reduced significantly by the adoption of the aluminum foam layer, and it verified strategy one. Furthermore, R-UHPC columns showed a better impact-resistant performance than R-NSC columns, especially, R-UHPC columns with the CCAF layer showed superior impactresistant performance, and it verified strategy two. The finite element model can predict the dynamic behaviors of aluminum foam protecting R-NSC and R-UHPC columns with reasonable accuracy. Eventually, the energy absorption of the specimens was investigated by the numerical model.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Low-velocity impact performance of orthogonal grid reinforced CFRP-foam sandwich structure
    Lv, Hangyu
    Shi, Shanshan
    Chen, Bingzhi
    Liu, Ziping
    THIN-WALLED STRUCTURES, 2023, 193
  • [22] Energy absorption and low-velocity impact response of shear thickening gel reinforced polyurethane foam
    Liu, Xiaoke
    Qian, Chen
    Yu, Kejing
    Jiang, Yang
    Fu, Qianqian
    Qian, Kun
    SMART MATERIALS AND STRUCTURES, 2020, 29 (04)
  • [23] Low-Velocity Impact Properties of Sandwich Structures with Aluminum Foam Cores and CFRP Face Sheets
    Rupp, Peter
    Imhoff, Jonas
    Weidenmann, Kay Andre
    JOURNAL OF COMPOSITES SCIENCE, 2018, 2 (02):
  • [24] Effects of aluminum foam filling on the low-velocity impact response of sandwich panels with corrugated cores
    Yan, L. L.
    Yu, B.
    Han, B.
    Zhang, Q. C.
    Lu, T. J.
    Lu, B. H.
    JOURNAL OF SANDWICH STRUCTURES & MATERIALS, 2020, 22 (04) : 929 - 947
  • [25] Effect of core densities on quasi-static and low-velocity impact behaviors of AFRP-aluminum foam hybrid sandwich beams
    Wang, Zhen
    Hong, Bin
    Xian, Guijun
    Xin, Meiyin
    Huang, Shengde
    Shen, Haijuan
    POLYMER COMPOSITES, 2024, 45 (16) : 15086 - 15099
  • [26] Cell-filling reinforced materials for improving the low-velocity impact performance of composite square honeycomb sandwiches: Polymethacrylimide foam vs. aluminum foam
    Song, Shijun
    Xiong, Chao
    Yin, Junhui
    Yang, Zhaoshu
    Han, Chao
    Zhang, Sa
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 78 : 543 - 560
  • [27] Investigation of low-velocity impact behaviors of polymer composites reinforced with different natural fiber fabrics
    Demir, Mert
    Ekici, Recep
    POLYMER COMPOSITES, 2024, 45 (06) : 4928 - 4946
  • [28] Dynamic behaviors of eccentrically loaded RC column under lateral low-velocity impact
    Jia, P. C.
    Wu, H.
    Peng, Q.
    Ma, L. L.
    ENGINEERING STRUCTURES, 2024, 309
  • [29] Experimental Study on Ultra-High Performance Concrete Columns Against Low-Velocity Impact
    Li, Jun
    Wu, Chengqing
    PROCEEDINGS OF THE 25TH AUSTRALASIAN CONFERENCE ON MECHANICS OF STRUCTURES AND MATERIALS (ACMSM25), 2020, 37 : 305 - 314
  • [30] Dynamic response of square sandwich plates with a metal foam core subjected to low-velocity impact
    Qin Qinghua
    Zheng Xiaoyu
    Zhang Jianxun
    Yuan Chao
    Wang, T. J.
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2018, 111 : 222 - 235