Concentration results for a magnetic Schrodinger-Poisson system with critical growth

被引:20
|
作者
Liu, Jingjing [1 ]
Ji, Chao [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
上海市自然科学基金;
关键词
Schrodinger-Poisson system; Magnetic field; Critical growth; Variational methods; KLEIN-GORDON-MAXWELL; MULTIPLE SOLUTIONS; EQUATION; STATES;
D O I
10.1515/anona-2020-0159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following nonlinear magnetic Schrodinger-Poisson type equation { (epsilon/i del - A(x)))(2) u + V(x)u + epsilon(-2)(vertical bar x vertical bar(-1) * vertical bar u vertical bar(2)) u + vertical bar u vertical bar(4)u in R-3, u is an element of H-1 (R-3, C), where epsilon > 0, V : R-3 and A : R-3 -> R-3 are continuous potentials, f : R -> R is a subcritical nonlinear term and is only continuous. Under a local assumption on the potential V, we use variational methods, penalization technique and Ljusternick-Schnirelmann theory to prove multiplicity and concentration of nontrivial solutions for epsilon > 0 small.
引用
收藏
页码:775 / 798
页数:24
相关论文
共 50 条
  • [31] Axially symmetric solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Tang, Xianhua
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9144 - 9174
  • [32] Multiple normalized solutions for the planar Schrodinger-Poisson system with critical exponential growth
    Chen, Sitong
    Radulescu, Vicentiu D.
    Tang, Xianhua
    MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (03)
  • [33] ON THE CRITICAL SCHRODINGER-POISSON SYSTEM WITH p-LAPLACIAN
    Du, Yao
    Su, Jiabao
    Wang, Cong
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (04) : 1329 - 1342
  • [34] Ground state solutions for Schrodinger-Poisson system with critical growth and nonperiodic potential
    Kang, Jin-Cai
    Chen, Xiao-Ping
    Tang, Chun-Lei
    JOURNAL OF MATHEMATICAL PHYSICS, 2022, 63 (10)
  • [35] On sign-changing solutions for quasilinear Schrodinger-Poisson system with critical growth
    Zhang, Jing
    Liang, Sihua
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2022, 67 (10) : 2397 - 2422
  • [36] On the number of concentrating solutions of a fractional Schrodinger-Poisson system with doubly critical growth
    Qu, Siqi
    He, Xiaoming
    ANALYSIS AND MATHEMATICAL PHYSICS, 2022, 12 (02)
  • [37] Existence and stability results for the planar Schrodinger-Poisson system
    Zhang, Guoqing
    Guo, Wenyan
    Zhang, Weiguo
    ARCHIV DER MATHEMATIK, 2016, 107 (05) : 561 - 568
  • [38] The nontrivial solutions for fractional Schrodinger-Poisson equations with magnetic fields and critical or supercritical growth
    Liu, Lintao
    Chen, Haibo
    APPLIED MATHEMATICS LETTERS, 2021, 121 (121)
  • [39] Ground state solution for a Schrodinger-Poisson equation with critical growth
    Liu, Jingmei
    Qian, Aixia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2018, 40 : 428 - 443
  • [40] On the planar Schrodinger-Poisson system
    Cingolani, Silvia
    Weth, Tobias
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (01): : 169 - 197