Concentration results for a magnetic Schrodinger-Poisson system with critical growth

被引:20
|
作者
Liu, Jingjing [1 ]
Ji, Chao [2 ]
机构
[1] Zhengzhou Univ Light Ind, Coll Math & Informat Sci, Zhengzhou 450002, Henan, Peoples R China
[2] East China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
基金
上海市自然科学基金;
关键词
Schrodinger-Poisson system; Magnetic field; Critical growth; Variational methods; KLEIN-GORDON-MAXWELL; MULTIPLE SOLUTIONS; EQUATION; STATES;
D O I
10.1515/anona-2020-0159
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the following nonlinear magnetic Schrodinger-Poisson type equation { (epsilon/i del - A(x)))(2) u + V(x)u + epsilon(-2)(vertical bar x vertical bar(-1) * vertical bar u vertical bar(2)) u + vertical bar u vertical bar(4)u in R-3, u is an element of H-1 (R-3, C), where epsilon > 0, V : R-3 and A : R-3 -> R-3 are continuous potentials, f : R -> R is a subcritical nonlinear term and is only continuous. Under a local assumption on the potential V, we use variational methods, penalization technique and Ljusternick-Schnirelmann theory to prove multiplicity and concentration of nontrivial solutions for epsilon > 0 small.
引用
收藏
页码:775 / 798
页数:24
相关论文
共 50 条