The Euler limit for kinetic models with Fermi-Dirac statistics

被引:4
|
作者
Zakrevskiy, Timofey [1 ]
机构
[1] Ecole Polytech, UMR 7640, Ctr Math Laurent Schwartz, F-91128 Palaiseau, France
关键词
kinetic model; Boltzmann equation; Euler equations; entropy; EQUATIONS; BOLTZMANN;
D O I
10.3233/ASY-151323
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the connection between kinetic models with Fermi-Dirac statistics and fluid dynamics. We establish that moments and parameters of Fermi-Dirac distributions are related by a diffeomorphism. We obtain the macroscopic limits when the fluid is dense enough that particles undergo many collisions per unit of time. This situation is described via a small parameter e, called the Knudsen number, that represents the ratio of mean free path of particles between collisions to some characteristic length of the flow. We give the conditions that allow us to formally derive the generalized Euler equations from the Boltzmann equation by adopting the formalism proposed in [Advances in Kinetic Theory and Continuum Mechanics, Springer, Berlin, 1991, pp. 57-71]. These conditions are related to the H-theorem and assume a formally consistent convergence for fluid dynamical moments and entropy of the kinetic equation. We also discuss the well-posedness of the obtained Euler equations by using Godunov's criterion of hyperbolicity.
引用
收藏
页码:59 / 77
页数:19
相关论文
共 50 条
  • [21] Feynman path centroid dynamics for Fermi-Dirac statistics
    Roy, PN
    Jang, SJ
    Voth, GA
    JOURNAL OF CHEMICAL PHYSICS, 1999, 111 (12): : 5303 - 5305
  • [23] Charge Transport Systems with Fermi-Dirac Statistics for Memristors
    Herda, Maxime
    Juengel, Ansgar
    Portisch, Stefan
    JOURNAL OF NONLINEAR SCIENCE, 2025, 35 (02)
  • [24] Fermi-Dirac statistics in Monte Carlo simulations of InGaAs MOSFETs
    Kalna, K.
    Yang, L.
    Asenov, A.
    NONEQUILIBRIUM CARRIER DYNAMICS IN SEMICONDUCTORS PROCEEDINGS, 2006, 110 : 281 - +
  • [25] Diffusive semiconductor moment equations using Fermi-Dirac statistics
    Juengel, Ansgar
    Krause, Stefan
    Pietra, Paola
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2011, 62 (04): : 623 - 639
  • [26] SEMICONDUCTOR EQUATIONS FOR VARIABLE MOBILITIES BASED ON BOLTZMANN STATISTICS OR FERMI-DIRAC STATISTICS
    GAJEWSKI, H
    GROGER, K
    MATHEMATISCHE NACHRICHTEN, 1989, 140 : 7 - 36
  • [27] FERMI-DIRAC EQUATIONS
    DELBOURGO, R
    JONES, LM
    AUSTRALIAN JOURNAL OF PHYSICS, 1992, 45 (05): : 621 - 634
  • [28] What is between Fermi-Dirac and Bose-Einstein statistics?
    Byczuk, K.
    Spalek, J.
    Joyce, G.S.
    Sarkar, S.
    Acta Physica Polonica, Series B., 1995, 26 (12):
  • [29] USING FERMI-DIRAC STATISTICS IN DEPOLARIZATION-FIELD CALCULATIONS
    WURFEL, P
    BATRA, IP
    PHYSICAL REVIEW B, 1974, 10 (03): : 1118 - 1121
  • [30] What is between Fermi-Dirac and Bose-Einstein statistics?
    Byczuk, K
    Spalek, J
    Joyce, GS
    Sarkar, S
    ACTA PHYSICA POLONICA B, 1995, 26 (12): : 2167 - 2184