Non-Abelian Properties of Charge Carriers in a Quasirelativistic Graphene Model

被引:0
|
作者
Grushevskaya, H., V [1 ]
Krylov, G. G. [1 ]
机构
[1] Belarusian State Univ, Minsk, BELARUS
关键词
topological materials; graphene; Majorana-like excitation; charge transport;
D O I
10.1134/S106378262012009X
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Charge carrier transport peculiarities stipulated by non-trivial topology of a quasi-relativistic graphene model are investigated. It has been demonstrated that the model predicts additional topological contributions such as Majorana-like mass-term correction to ordinary Ohmic component of current, spin-orbital-coupling and "Zitterbewegung"-effect corrections to conductivity in space and time dispersion regime. Phenomena of negative differential conductivity for graphene have been interpreted based on the proposed approach.
引用
收藏
页码:1737 / 1739
页数:3
相关论文
共 50 条
  • [41] Model of chiral spin liquids with Abelian and non-Abelian topological phases
    Chen, Jyong-Hao
    Mudry, Christopher
    Chamon, Claudio
    Tsvelik, A. M.
    PHYSICAL REVIEW B, 2017, 96 (22)
  • [42] ABELIAN AND NON-ABELIAN BOSONIZATION - THE OPERATOR SOLUTION OF THE WZW SIGMA MODEL
    DOAMARAL, RLPG
    RUIZ, JES
    PHYSICAL REVIEW D, 1991, 43 (06): : 1943 - 1948
  • [43] Non-Abelian supertubes
    Fernandez-Melgarejo, Jose J.
    Park, Minkyu
    Shigemori, Masaki
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (12):
  • [44] Abelian and non-Abelian Weyl gravitoelectromagnetism
    Ramos, J.
    de Montigny, M.
    Khanna, F. C.
    ANNALS OF PHYSICS, 2020, 418
  • [45] The quintessence with Abelian and non-Abelian symmetry
    Li, XZ
    Hao, JG
    Liu, DJ
    Zhai, XH
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2003, 18 (32): : 5921 - 5930
  • [46] ABELIAN VERSUS NON-ABELIAN HIGGS-MODEL IN 3 DIMENSIONS
    BUCHMULLER, W
    PHILIPSEN, O
    PHYSICS LETTERS B, 1995, 354 (3-4) : 403 - 408
  • [47] Non-Abelian antibrackets
    Alfaro, J
    Damgaard, PH
    PHYSICS LETTERS B, 1996, 369 (3-4) : 289 - 294
  • [48] Non-abelian ramification
    Pongerard, P
    Wagschal, C
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1998, 77 (01): : 51 - 88
  • [49] Non-abelian monopoles
    Auzzi, R
    Bolognesi, S
    Evslin, J
    Konishi, K
    Murayama, H
    NUCLEAR PHYSICS B, 2004, 701 (1-2) : 207 - 246
  • [50] Non-abelian ramification
    Wagschal, C
    JEAN LERAY '99 CONFERENCE PROCEEDINGS: THE KARLSKRONA CONFERENCE IN HONOR OF JEAN LERAY, 2003, 24 : 115 - +