THE GEOGRAPHY PROBLEM FOR 4-MANIFOLDS WITH SPECIFIED FUNDAMENTAL GROUP

被引:8
|
作者
Kirk, Paul [1 ]
Livingston, Charles [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
Hausmann-Weinberger invariant; fundamental group; four-manifold; minimal Euler characteristic; geography; SYMPLECTIC; 4-MANIFOLDS; EULER CHARACTERISTICS; L(2)-BETTI NUMBERS;
D O I
10.1090/S0002-9947-09-04649-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any class M of 4-manifolds, for instance the class M(G) of closed oriented manifolds with pi(1) (M) congruent to G for a fixed group G, the geography of M is the set of integer pairs {(sigma(M), chi(M)) vertical bar M is an element of M}, where sigma and chi denote the signature and Euler characteristic. This paper explores general properties of the geography of M(G) and undertakes an extended study of M(Z(n)).
引用
收藏
页码:4091 / 4124
页数:34
相关论文
共 50 条