A mass formula for Z4 cyclic codes of length 2e

被引:0
|
作者
Abualrub, T [1 ]
Ghrayeb, A [1 ]
Oehmke, RH [1 ]
机构
[1] Amer Univ Sharjah, Dept Math & Stat, Sharjah, U Arab Emirates
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study cyclic codes of length n = 21 over the ring R-4 = Z(4) [x] / (x(n) - 1). In particular, we derive a mass formula of these codes for a given length n. We also give an example in which we study codes of length 8.
引用
收藏
页码:488 / 488
页数:1
相关论文
共 50 条
  • [21] Self-dual cyclic codes over Z4 of length 4n
    Cao, Yuan
    Cao, Yonglin
    Fu, Fang-Wei
    Wang, Guidong
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2022, 33 (01) : 21 - 51
  • [22] Generalized cyclotomic numbers and cyclic codes of prime power length over Z4
    Batra, Sudhir
    Jain, Sonal
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (05)
  • [23] Binary images of cyclic codes over Z4
    Wolfmann, J
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (05) : 1773 - 1779
  • [24] Cyclic codes over a linear companion of Z4
    Udaya, P
    Bonnecaze, A
    1998 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 1998, : 398 - 398
  • [25] Reversible complement cyclic codes over Z4
    Klin-Earn, Chakkrid
    Sriwirach, Wateekorn
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (07)
  • [26] Cyclic codes over Z4 + uZ4
    Bandi, Rama Krishna
    Bhaintwal, Maheshanand
    2015 SEVENTH INTERNATIONAL WORKSHOP ON SIGNAL DESIGN AND ITS APPLICATIONS IN COMMUNICATIONS (IWSDA), 2015, : 47 - 51
  • [27] Negacyclic codes over Z4 of even length
    Blackford, T
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (06) : 1417 - 1424
  • [28] Cyclic codes over Z4 + uZ4 + u2Z4
    Ozen, Mehmet
    Ozzaim, Nazmiye Tugba
    Aydin, Nuh
    TURKISH JOURNAL OF MATHEMATICS, 2017, 41 (05) : 1235 - 1247
  • [29] Infinite families of MDR cyclic codes over Z4 via constacyclic codes over Z4[u]/⟨u2-1⟩
    Han, Nayoung
    Kim, Bohyun
    Kim, Boran
    Lee, Yoonjin
    DISCRETE MATHEMATICS, 2020, 343 (03)
  • [30] On the construction of self-dual cyclic codes over Z4 with arbitrary even length
    Cao, Yuan
    Cao, Yonglin
    Ling, San
    Wang, Guidong
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2022, 14 (05): : 1117 - 1143