Understanding deterministic diffusion by correlated random walks

被引:28
|
作者
Klages, R [1 ]
Korabel, N [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
来源
关键词
D O I
10.1088/0305-4470/35/23/302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Low-dimensional periodic arrays of scatterers with a moving point particle are ideal models for studying deterministic diffusion. For such systems the diffusion coefficient is typically an irregular function under variation of a control parameter. Here we propose a systematic scheme of how to approximate deterministic diffusion coefficients of this kind in terms of correlated random walks. We apply this approach to two simple examples which are a one-dimensional map on the line, and the periodic Lorentz gas. Starting from suitable Green-Kubo formulae we evaluate hierarchies of approximations for their parameter-dependent diffusion coefficients. These approximations converge exactly yielding a straightforward interpretation of the structure of these irregular diffusion coefficients in terms of dynamical correlations.
引用
收藏
页码:4823 / 4836
页数:14
相关论文
共 50 条
  • [41] Deterministic and random partially self-avoiding walks in random media
    Sangaletti Tercariol, Cesar Augusto
    Gonzalez, Rodrigo Silva
    Reis Oliveira, Wilnice Tavares
    Martinez, Alexandre Souto
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (02) : 678 - 680
  • [42] Deterministic walks in quenched random environments of chaotic maps
    Simula, Tapio
    Stenlund, Mikko
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (24)
  • [43] Random walks pertaining to a class of deterministic weighted graphs
    Huillet, Thierry
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (27)
  • [44] Deterministic walks in random networks:: an application to thesaurus graphs
    Kinouchi, O
    Martinez, AS
    Lima, GF
    Lourenço, GM
    Risau-Gusman, S
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 315 (3-4) : 665 - 676
  • [45] Deterministic random walks on the two-dimensional grid
    Doerr, Benjamin
    Friedrich, Tobias
    ALGORITHMS AND COMPUTATION, PROCEEDINGS, 2006, 4288 : 474 - +
  • [46] Diffusion at finite speed and random walks
    Keller, JB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (05) : 1120 - 1122
  • [47] Thermophoretic Random Walks and Enhancement of Diffusion
    Semenov, Semen N.
    Schimpf, Martin E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (27): : 7427 - 7434
  • [48] Random walks and diffusion in Lipschitz domains
    Varopoulos, NT
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (04): : 357 - 360
  • [49] RANDOM WALKS AND DRIFT IN CHEMICAL DIFFUSION
    LECLAIRE, AD
    PHILOSOPHICAL MAGAZINE, 1958, 3 (33): : 921 - 939
  • [50] Random walks and related diffusion equations
    Moretti, P
    Lantieri, M
    Cianchi, L
    CANADIAN JOURNAL OF PHYSICS, 2004, 82 (11) : 891 - 904