Static Soil Moisture Retrieval Measurements Based on GNSS-R

被引:0
|
作者
Tengda Pei [1 ]
Yuekun Pei [1 ]
机构
[1] Dalian Econ Technol Dev Zone, St Xuefudajie 10, Dalian 116622, Liaoning, Peoples R China
来源
2017 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL SYSTEMS AND COMMUNICATIONS (ICCSC 2017) | 2017年
关键词
GNSS-R; Soil moisture; Software receiver; Dielectric constant;
D O I
10.23977/iccsc.2017.1006
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
GNSS Reflectometry (GNSS-R) is a remote sensing tool for extracting Earth surface information. This work presents a preliminary result of a static measurement applying the software GPS receiver. The system configuration consists of both Right Hand Circularly Polarization (RHCP) and Left Hand Circularly Polarization (LHCP) antennas for receiving reflected signals. Raw sampled data were stored into two PCs for post processing in order to get Signal to Noise Ratio (SNR) for both polarizations. Power reflectivity behavior was theoretically analyzed and compared with obtained results. A trial dielectric constant retrieval of the meadow was attempted, and the results were coherent with the in-situ soil moisture state.
引用
收藏
页码:29 / 33
页数:5
相关论文
共 50 条
  • [11] In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model Based on LSTM
    Zhang, Tianlong
    Yang, Lei
    Nan, Hongtao
    Yin, Cong
    Sun, Bo
    Yang, Dongkai
    Hong, Xuebao
    Lopez-Baeza, Ernesto
    REMOTE SENSING, 2023, 15 (10)
  • [12] Comprehensive Analysis of CYGNSS GNSS-R Data for Enhanced Soil Moisture Retrieval
    Setti, Paulo
    Tabibi, Sajad
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 663 - 679
  • [13] Analysis of Key Issues on GNSS-R Soil Moisture Retrieval Based on Different Antenna Patterns
    Li, Fei
    Peng, Xuefeng
    Chen, Xiuwan
    Liu, Maolin
    Xu, Liwen
    SENSORS, 2018, 18 (08)
  • [14] Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development Opportunities, and Challenges
    Wu, Xuerui
    Ma, Wenxiao
    Xia, Junming
    Bai, Weihua
    Jin, Shuanggen
    Calabia, Andres
    REMOTE SENSING, 2021, 13 (01) : 1 - 24
  • [15] GROUND-BASED GNSS-R REMOTE SENSING EXPERIMENT FOR RETRIEVAL OF SOIL MOISTURE CONTENT IN CHINA
    Xiao Han
    Yang Zhenyu
    Hu Caiyi
    Chen Xiuwan
    Zhen Han
    Cao Yanfeng
    Li Wei
    Li Huaiyu
    Huang Dan
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 4070 - 4073
  • [16] The study of soil moisture retrieval from GNSS-R signals based on AIEM model and experiment data
    Mao, Kebiao
    Wang, Jianming
    Zhang, Mengyang
    Tang, Huajun
    Zhou, Qingbo
    Gaojishu Tongxin/Chinese High Technology Letters, 2009, 19 (03): : 295 - 301
  • [17] GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning Aided Method: Performance and Validation
    Jia, Yan
    Jin, Shuanggen
    Savi, Patrizia
    Gao, Yun
    Tang, Jing
    Chen, Yixiang
    Li, Wenmei
    REMOTE SENSING, 2019, 11 (14)
  • [18] An Improved Method for Water Body Removal in Spaceborne GNSS-R Soil Moisture Retrieval
    Yang, Wentao
    Guo, Fei
    Zhang, Xiaohong
    Zhu, Yifan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [19] INCIDENCE ANGLE NORMALIZATION OF SPACEBORNE GNSS-R SURFACE REFLECTIVITY FOR SOIL MOISTURE RETRIEVAL
    Setti, Paulo T., Jr.
    Tabibi, Sajad
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 510 - 513
  • [20] DEEP GENERATIVE REGRESSION MODELS FOR SOIL MOISTURE RETRIEVAL FROM GNSS-R OBSERVATIONS
    Tsagkatakis, G.
    Melebari, A.
    Akbar, R.
    Campbell, J. D.
    Hodges, E.
    Moghaddam, M.
    2023 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS, ICEAA, 2023, : 291 - 291