Poisson cohomology in dimension two

被引:21
|
作者
Monnier, P [1 ]
机构
[1] Univ Montpellier 2, Dept Math, F-34095 Montpellier 5, France
关键词
Vector Field; Normal Form; Spectral Sequence; Poisson Structure; Poisson Manifold;
D O I
10.1007/BF02773163
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It, is known that the computation of the Poisson cohomology is closely related to the classification of singularities of Poisson structures. In this paper, we will first look for the normal forms of germs at (0,0) of Poisson structures on K-2 (K = R or C) and recall a result given by Arnold. Then we will compute locally the Poisson cohomology of a particular type of Poisson structure.
引用
收藏
页码:189 / 207
页数:19
相关论文
共 50 条
  • [31] HOCHSCHILD COHOMOLOGY AND DOMINANT DIMENSION
    Fang, Ming
    Miyachi, Hyohe
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (08) : 5267 - 5292
  • [32] Galois cohomology of fields with a dimension
    Martin-Pizarro, A
    JOURNAL OF ALGEBRA, 2006, 298 (01) : 34 - 40
  • [33] Twisted Poincare duality between Poisson homology and Poisson cohomology
    Luo, J.
    Wang, S. -Q.
    Wu, Q. -S.
    JOURNAL OF ALGEBRA, 2015, 442 : 484 - 505
  • [34] ON SOME PROPERTIES OF POISSON COHOMOLOGY: EXAMPLE OF CALCULATION ON A POISSON STRUCTURE
    Iskamle, Bruno
    Dongho, Joseph
    Ndombol, Bitjong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025,
  • [35] Poisson cohomology of plane Poisson structures with isolated singularities revisited
    Qi, Zihao
    Zhou, Guodong
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [36] Poisson cohomology of holomorphic tonic Poisson manifolds. I
    Hong, Wei
    JOURNAL OF ALGEBRA, 2019, 527 : 147 - 181
  • [37] Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
    David Martínez-Torres
    Eva Miranda
    Regular and Chaotic Dynamics, 2018, 23 : 47 - 53
  • [38] Zeroth Poisson Homology, Foliated Cohomology and Perfect Poisson Manifolds
    Martinez-Torres, David
    Miranda, Eva
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (01): : 47 - 53
  • [39] REMARKS ON THE LICHNEROWICZ-POISSON COHOMOLOGY
    VAISMAN, I
    ANNALES DE L INSTITUT FOURIER, 1990, 40 (04) : 951 - 963
  • [40] Homology and cohomology on generalized Poisson manifolds
    Ibanez, R
    de Leon, M
    Marrero, JC
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (04): : 1253 - 1266