Consistent and robust variable selection in regression based on Wald test

被引:3
|
作者
Kamble, T. S. [1 ]
Kashid, D. N. [1 ]
Sakate, D. M. [1 ]
机构
[1] Shivaji Univ, Dept Stat, Kolhapur 416004, MS, India
关键词
M-estimator; penalty; outlier; Huber function; leverage points; LINEAR-MODEL SELECTION; SUBSET-SELECTION; CRITERION;
D O I
10.1080/03610926.2018.1440598
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Selection of relevant predictor variables for building a model is an important problem in the multiple linear regression. Variable selection method based on ordinary least squares estimator fails to select the set of relevant variables for building a model in the presence of outliers and leverage points. In this article, we propose a new robust variable selection criterion for selection of relevant variables in the model and establish its consistency property. Performance of the proposed method is evaluated through simulation study and real data.
引用
收藏
页码:1981 / 2000
页数:20
相关论文
共 50 条
  • [31] Exploration of the MCMC Wald test with linear regression
    Woller, Michael P.
    Enders, Craig K.
    BEHAVIOR RESEARCH METHODS, 2024, 56 (07) : 7391 - 7409
  • [32] Outlier Detection and Robust Variable Selection for Least Angle Regression
    Shahriari, Shirin
    Faria, Susana
    Manuela Goncalves, A.
    Van Aelst, Stefan
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2014, PT III, 2014, 8581 : 512 - +
  • [33] Robust Signed-Rank Variable Selection in Linear Regression
    Abebe, Asheber
    Bindele, Huybrechts F.
    ROBUST RANK-BASED AND NONPARAMETRIC METHODS, 2016, 168 : 25 - 45
  • [34] A simulation study on classic and robust variable selection in linear regression
    Çetin, Meral
    Erar, Aydin
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 175 (02) : 1629 - 1643
  • [35] New Robust Variable Selection Methods for Linear Regression Models
    Chen, Ziqi
    Tang, Man-Lai
    Gao, Wei
    Shi, Ning-Zhong
    SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (03) : 725 - 741
  • [36] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [37] VARIABLE SELECTION IN MULTIVARIATE REGRESSION - APPLICATION OF SIMULTANEOUS TEST PROCEDURES
    MCKAY, RJ
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (03): : 371 - 380
  • [38] Unified distributed robust regression and variable selection framework for massive data
    Wang, Kangning
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 186
  • [39] Robust and smoothing variable selection for quantile regression models with longitudinal data
    Fu, Z. C.
    Fu, L. Y.
    Song, Y. N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2023, 93 (15) : 2600 - 2624
  • [40] Fast robust variable selection using VIF regression in large datasets
    Seo, Han Son
    KOREAN JOURNAL OF APPLIED STATISTICS, 2018, 31 (04) : 463 - 473