RECOGNITION OF C4-FREE AND 1/2-HYPERBOLIC GRAPHS

被引:16
|
作者
Coudert, David [1 ,2 ]
Ducoffe, Guillaume [2 ,3 ]
机构
[1] INRIA, F-06902 Sophia Antipolis, France
[2] Univ Nice Sophia Antipolis, CNRS, I3S, UMR 7271, F-06900 Sophia Antipolis, France
[3] ENS Cachan, F-94230 Cachan, France
关键词
hyperbolicity; discrete metric space; graph algorithms; C-4-free graphs; rectangular matrix multiplication; RECTANGULAR MATRIX MULTIPLICATION; GROMOV HYPERBOLICITY; ALL-PAIRS;
D O I
10.1137/140954787
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The shortest-path metric d of a connected graph G is 1/2-hyperbolic if and only if it satisfies d(u, v) + d(x, y) <= max{d(u, x) + d(v, y), d(u, y) + d(v, x)} + 1, for every 4-tuple u, x, v, y of G. We show that the problem of deciding whether an unweighted graph is 1/2-hyperbolic is subcubic equivalent to the problem of determining whether there is a chordless cycle of length 4 in a graph. An improved algorithm is also given for both problems, taking advantage of fast rectangular matrix multiplication. In the worst case it runs in O(n(3.26))-time.
引用
收藏
页码:1601 / 1617
页数:17
相关论文
共 50 条
  • [1] Polarity graphs and C4-free multipartite graphs
    Goncalves, Claudia J. F.
    Monte Carmelo, Emerson L.
    Nakaoka, Irene N.
    PROCEEDINGS OF THE XI LATIN AND AMERICAN ALGORITHMS, GRAPHS AND OPTIMIZATION SYMPOSIUM, 2021, 195 : 437 - 444
  • [2] Large cliques in C4-free graphs
    Gyárfás, A
    Hubenko, A
    Solymosi, J
    COMBINATORICA, 2002, 22 (02) : 269 - 274
  • [3] Cliques in the Union of C4-Free Graphs
    Othman, Abeer
    Berger, Eli
    GRAPHS AND COMBINATORICS, 2018, 34 (04) : 607 - 612
  • [4] Universality vs Genericity and C4-free graphs
    Panagiotopoulos, Aristotelis
    Tent, Katrin
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 106
  • [5] Which graphs can be counted in C4-free graphs?
    Conlon, David
    Fox, Jacob
    Sudakov, Benny
    Zhao, Yufei
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2022, 18 (06) : 2413 - 2432
  • [6] The energy of C4-free graphs of bounded degree
    Nikiforov, V.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (11-12) : 2569 - 2573
  • [7] Loose vertices in C4-free Berge graphs
    Parfenoff, I
    Roussel, F
    Rusu, I
    DISCRETE MATHEMATICS, 2002, 258 (1-3) : 137 - 160
  • [8] The Maximum Size of C4-Free Planar Graphs
    Zhou, Guofei
    Chen, Yaojun
    ARS COMBINATORIA, 2017, 131 : 31 - 41
  • [9] The strong chromatic index of C4-free graphs
    Mahdian, M
    RANDOM STRUCTURES & ALGORITHMS, 2000, 17 (3-4) : 357 - 375
  • [10] Extremal C4-Free/C5-Free Planar Graphs
    Dowden, Chris
    JOURNAL OF GRAPH THEORY, 2016, 83 (03) : 213 - 230