Bifurcation near infinity for the Neumann problem with concave-convex nonlinearities

被引:0
|
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[3] Acad Romana, Simion Stoilow Inst Math, Bucharest 014700, Romania
关键词
D O I
10.1016/j.crma.2014.08.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this Note, we study a class of Neumann parametric elliptic equations driven by a nonhomogeneous differential operator and with a reaction that exhibits competing terms (concave-convex nonlinearities). Using the Ambrosetti-Rabinowitz condition and related topological and variational arguments, we prove a bifurcation result for large values of the parameter. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:811 / 816
页数:6
相关论文
共 50 条