Riemann-Hilbert approach for an initial-boundary value problem of the two-component modified Korteweg-de Vries equation on the half-line

被引:61
|
作者
Hu, Bei-Bei [1 ,2 ]
Xia, Tie-Cheng [1 ]
Ma, Wen-Xiu [3 ,4 ,5 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou 239000, Anhui, Peoples R China
[3] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[4] North West Univ, Dept Math Sci, Mafikeng Campus, ZA-2735 Mmabatho, South Africa
[5] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Shandong, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Riemann-Hilbert problem; Two-component mKdV equation; Initial-boundary value problem; Unified transform method; NONLINEAR SCHRODINGER-EQUATION; EVOLUTION-EQUATIONS; SOLITON-SOLUTIONS; KDV;
D O I
10.1016/j.amc.2018.03.049
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we investigate the two-component modified Korteweg-de Vries (mKdV) equation, which is a complete integrable system, and accepts a generalization of 4 x 4 matrix Ablowitz-Kaup-Newell-Segur (AKNS)-type Lax pair. By using of the unified transform approach, the initial-boundary value (IBV) problem of the two-component mKdV equation associated with a 4 x 4 matrix Lax pair on the half-line will be analyzed. Supposing that the solution {u(1)(x, t), u(2)(x, t)) of the two-component mKdV equation exists, we will show that it can be expressed in terms of the unique solution of a 4 x 4 matrix Riemann-Hilbert problem formulated in the complex lambda-plane. Moreover, we will prove that some spectral functions s(lambda) and S(lambda) are not independent of each other but meet the global relationship. (C) 2018 Elsevier Inc. All rights reserved.
引用
下载
收藏
页码:148 / 159
页数:12
相关论文
共 50 条