Thermal investigations of nanoaluminum/perfluoropolyether core-shell impregnated composites for structural energetics

被引:27
|
作者
Kettwich, Sharon C. [1 ,2 ]
Kappagantula, Keerti [3 ]
Kusel, Bradley S. [1 ,2 ]
Avjian, Eryn K. [1 ,2 ]
Danielson, Seth T. [1 ,2 ]
Miller, Hannah A. [1 ,2 ]
Pantoya, Michelle L. [3 ]
Iacono, Scott T. [1 ,2 ]
机构
[1] US Air Force Acad, Dept Chem, Colorado Springs, CO 80840 USA
[2] US Air Force Acad, Chem Res Ctr, Colorado Springs, CO 80840 USA
[3] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
关键词
Hybrid materials; Composite materials; Nanoparticles; Energetic materials; Epoxides; ALUMINUM; BEHAVIOR;
D O I
10.1016/j.tca.2014.07.016
中图分类号
O414.1 [热力学];
学科分类号
摘要
An operationally simple blendable approach to producing structural energetic composites loaded with nanoaluminum (n-Al) particles coated by perfluoropolyethers (PFPE) yields shape moldable, structurally flexible materials. The epoxide system of poly(ethylene glycol) diglycidyl ether (PEG-DGE) and triethylenetetramine (TETA) are partially cured with an energetic blend of n-Al/PFPE core-shell particles and mechanically mixed and produce a homogeneous composite material whereby energetic potency is indefinitely shelf-stable. The composites are characterized by a suite of thermal techniques using DSC, TGA, and SDT in addition to open flame burn rate and heat of combustion measurements. This composite system may further expand the use of energetic materials with tailorable exothermic properties. Published by Elsevier B.V.
引用
收藏
页码:45 / 50
页数:6
相关论文
共 50 条
  • [1] Structural, Chemical, and Magnetic Investigations of Core-Shell Zinc Ferrite Nanoparticles
    Gomes, J. A.
    Azevedo, G. M.
    Depeyrot, J.
    Mestnik-Filho, J.
    Paula, F. L. O.
    Tourinho, F. A.
    Perzynski, R.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (45): : 24281 - 24291
  • [2] Thermal conductivity of three-component composites of core-shell particles
    Pal, Rajinder
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 498 (1-2): : 135 - 141
  • [3] Modelling of Effective Thermal Conductivity of Composites Filled with Core-Shell Fillers
    Czyzewski, Jan
    Rybak, Andrzej
    Gaska, Karolina
    Sekula, Robert
    Kapusta, Czeslaw
    MATERIALS, 2020, 13 (23) : 1 - 18
  • [4] Core-Shell Zeolite Composites and Reactors
    Chen Lifeng
    Shi Jing
    Zhang Yahong
    Tang Yi
    PROGRESS IN CHEMISTRY, 2012, 24 (07) : 1262 - 1269
  • [5] Effects of thermal contact resistance on the thermal conductivity of core-shell nanoparticle polymer composites
    Ngo, Ich-Long
    Vattikuti, S. V. Prabhakar
    Byon, Chan
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 102 : 713 - 722
  • [6] Structural and optical investigations of SiO2-CdS core-shell particles
    Hebalkar, N
    Kharrazi, S
    Ethiraj, A
    Urban, J
    Fink, R
    Kulkarni, SK
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2004, 278 (01) : 107 - 114
  • [7] Thermal conductivity of thermally conductive composites consisting of core-shell particles with nanostructured shell layers
    Kim, Sang Woo
    Choi, Hyun-seok
    Lee, Kyung-sub
    MATERIALS RESEARCH BULLETIN, 2014, 60 : 843 - 848
  • [8] SPECTROSCOPIC INVESTIGATIONS ON POLYMERIC CORE-SHELL SYSTEMS
    HERGETH, WD
    LANGE, J
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR SYMPOSIA, 1991, 52 : 283 - 288
  • [9] Research on core-shell nanofiber self-healing composites for structural applications
    Wang, Hongwei
    Cai, Haopeng
    Chen, Boxue
    Mao, Chi
    POLYMER COMPOSITES, 2021, 42 (07) : 3281 - 3292
  • [10] Epoxy composites with ceramic core-shell fillers for thermal management in electrical devices
    Rybak, Andrzej
    Gaska, Karolina
    Kapusta, Czeslaw
    Toche, Francois
    Salles, Vincent
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2017, 28 (12) : 1676 - 1682