Classification of defaced occlusion plates based on convolutional neural network

被引:0
|
作者
Sen, Zhang [1 ]
Zhang Jingle [2 ]
Jie, Li [1 ]
Shuai, Chen [1 ]
机构
[1] Minist Publ Secur, Traff Management Res Inst, 88 Qianrong Rd, Wuxi 214151, Jiangsu, Peoples R China
[2] Beijing Huizhi Data Technol Co, Court 1 Upland 10th St, Beijing 100085, Peoples R China
关键词
Intelligent transportation; defacement; occlusion; deep learning; OCR;
D O I
10.1117/12.2574415
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
As one of the important components of intelligent transportation, license plate recognition plays an irreplaceable role in people's daily life. For example, illegal vehicles often escape from punishment because of the number plate defacement or intentional occlusion, which further increases the difficulty of law enforcement. Therefore, it is significant for automatic recognition system to improve the identification efficiency of the contaminated or occluded license plate. This paper mainly focuses on the recognition of occlusion number plate. License plates can be divided into four categories: normal number plate, partial occlusion number plate, complete occlusion number plate and unsuspended number plate. The traditional OCR algorithm has a high accuracy in the recognition of Chinese characters, characters and numbers. Although the detection of normal and partial occlusion plates also shows a good recognition in the case of OCR, the recognition of complete occlusion and unsuspended license plates is still very poor. With the development of artificial intelligence, it is possible to identify all the sheltered and unsuspended plates better. Combining with the advantages of traditional algorithms, this paper uses traditional OCR and current deep learning algorithm to optimize the recognition effect of stained license plate.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Pneumonia image classification based on convolutional neural network
    Xiong, Feng
    He, Di
    Liu, Yujie
    Qi, Meijie
    Zhang, Zhoufeng
    Liu, Lixin
    TWELFTH INTERNATIONAL CONFERENCE ON INFORMATION OPTICS AND PHOTONICS (CIOP 2021), 2021, 12057
  • [22] Convolutional Neural Network based Audio Event Classification
    Lim, Minkyu
    Lee, Donghyun
    Park, Hosung
    Kang, Yoseb
    Oh, Junseok
    Park, Jeong-Sik
    Jang, Gil-Jin
    Kim, Ji-Hwan
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (06): : 2748 - 2760
  • [23] CLASSIFICATION OF CERAMIC SHARDS BASED ON CONVOLUTIONAL NEURAL NETWORK
    Chetouani, Aladine
    Debroutelle, Teddy
    Treuillet, Sylvie
    Exbrayat, Matthieu
    Jesset, Sebastien
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1038 - 1042
  • [24] CT image classification based on convolutional neural network
    Zhang, Yuezhong
    Wang, Shi
    Zhao, Honghua
    Guo, Zhenhua
    Sun, Dianmin
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (14): : 8191 - 8200
  • [25] Music Classification and Identification Based on Convolutional Neural Network
    Yuan Y.
    Liu J.
    Computer-Aided Design and Applications, 2024, 21 (S18): : 205 - 221
  • [26] Vehicle Type Classification based on Convolutional Neural Network
    Chen, Yanjun
    Zhu, Wenxing
    Yao, Donghui
    Zhang, Lidong
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 1898 - 1901
  • [27] Image Classification Based on the Boost Convolutional Neural Network
    Lee, Shin-Jye
    Chen, Tonglin
    Yu, Lun
    Lai, Chin-Hui
    IEEE ACCESS, 2018, 6 : 12755 - 12768
  • [28] Object Classification Based on Multitask Convolutional Neural Network
    Zhang Miaohui
    Zhang Bo
    Gao Chengcheng
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (23)
  • [29] Classification of Trackside Equipment Based on Convolutional Neural Network
    Li, Weidong
    Li, Jinshuang
    Liu, Yang
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 4806 - 4811
  • [30] CT image classification based on convolutional neural network
    Yuezhong Zhang
    Shi Wang
    Honghua Zhao
    Zhenhua Guo
    Dianmin Sun
    Neural Computing and Applications, 2021, 33 : 8191 - 8200