Covalent organic frameworks for applications in lithium batteries

被引:18
|
作者
Yang, Liting [1 ]
Huang, Ning [1 ]
机构
[1] Zhejiang Univ, Dept Polymer Sci & Engn, MOE Key Lab Macromol Synth & Functionalizat, State Key Lab Silicon Mat, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
covalent organic frameworks; porous organic polymers; lithium ion batteries; lithium sulfur batteries; ENERGY-STORAGE; CATHODE MATERIALS; PERFORMANCE; NANOSHEETS; DESIGN; ANODE;
D O I
10.1002/pol.20210940
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
With the stone energy increasingly dried up and the environment polluted severely, developing renewable clean energy is already in extreme urgency. Exploiting new energy storage and transformation systems has progressively become the focal point in the energy research field. Covalent organic frameworks (COFs) have attracted extensive attention as a new kind of crosslinked polymers owing to the high crystallinity, excellent porosity, and favorable stability. The last decade has witnessed the great progress in crystalline COFs for the application in various arenas. The tailor-made functional skeleton together with well-defined periodical alignment has endowed COFs with enormous potential in lithium batteries. In this review, we initially illustrated the design principle of COFs for the application in lithium batteries. Furthermore, we made a comprehensive summary of the fast-developing COFs field in terms of lithium batteries, including lithium ion and lithium sulfur batteries. Finally, we discussed the remaining challenges and perspectives in this area and also proposed several possible future directions of development for lithium batteries. It is expected that this short review would contribute to the development of COFs materials in energy-related applications.
引用
收藏
页码:2225 / 2238
页数:14
相关论文
共 50 条
  • [31] Multifunctional covalent organic frameworks for high capacity and dendrite-free lithium metal batteries
    Xu, Ying
    Zhou, Yang
    Li, Tao
    Jiang, Shuaihu
    Qian, Xin
    Yue, Qin
    Kang, Yijin
    ENERGY STORAGE MATERIALS, 2020, 25 (25) : 334 - 341
  • [32] Three-dimensional Covalent Organic Frameworks as Host Materials for Lithium-Sulfur Batteries
    Li, Zhen
    Zhou, Hang-Yu
    Zhao, Fu-Lai
    Wang, Tian-Xiong
    Ding, Xuesong
    Han, Bao-Hang
    Feng, Wei
    CHINESE JOURNAL OF POLYMER SCIENCE, 2020, 38 (05) : 550 - 557
  • [33] Regulating solvation structure in gel polymer electrolytes with covalent organic frameworks for lithium metal batteries
    Lin, Zhihong
    Wang, Yue
    Li, Yuan
    Liu, Yan
    Zhong, Shouchao
    Xie, Mingshu
    Yan, Fang
    Zhang, Zeyu
    Peng, Jing
    Li, Jiuqiang
    Wang, Aiping
    Chen, Xibang
    Zhai, Maolin
    Zhang, Hao
    Qiu, Jingyi
    ENERGY STORAGE MATERIALS, 2022, 53 : 917 - 926
  • [34] Perspectives of ionic covalent organic frameworks for rechargeable batteries
    Zou, Jincheng
    Fan, Kun
    Chen, Yuan
    Hu, Wenping
    Wang, Chengliang
    COORDINATION CHEMISTRY REVIEWS, 2022, 458
  • [35] Covalent Organic Frameworks for Next-Generation Batteries
    Chen, Xiudong
    Sun, Weiwei
    Wang, Yong
    CHEMELECTROCHEM, 2020, 7 (19) : 3905 - 3926
  • [36] Structural Engineering of Covalent Organic Frameworks for Rechargeable Batteries
    Zhou, Limin
    Jo, Seonyong
    Park, Mihui
    Fang, Liang
    Zhang, Kai
    Fan, Yanpeng
    Hao, Zhimeng
    Kang, Yong-Mook
    ADVANCED ENERGY MATERIALS, 2021, 11 (27)
  • [37] Covalent organic frameworks (COFs) for environmental applications
    Wang, Jianlong
    Zhuang, Shuting
    COORDINATION CHEMISTRY REVIEWS, 2019, 400
  • [38] Covalent Organic Frameworks: From Structures to Applications
    Tran, Quang Nhat
    Lee, Hyun Jong
    Tran, Ngo
    POLYMERS, 2023, 15 (05)
  • [39] Covalent Organic Frameworks: Structures, Synthesis, and Applications
    Lohse, Maria S.
    Bein, Thomas
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (33)
  • [40] Covalent Organic Frameworks: Synthesis and Applications for Photocatalysis
    Shahid, Misbah
    Ur Rehman, Aziz
    Najam, Tayyaba
    Majeed, Hammad
    Shalash, Marwan
    El-Bahy, Salah M.
    Javed, Muhammad Sufyan
    Shah, Syed Shoaib Ahmad
    Nazir, Muhammad Altaf
    CHEMPHOTOCHEM, 2024,