Boundary observability of gravity water waves

被引:9
|
作者
Alazard, Thomas [1 ,2 ]
机构
[1] Ecole Normale Super Paris Saclay, CNRS, 61 Av President Wilson, F-94235 Cachan, France
[2] Ecole Normale Super Paris Saclay, Ctr Math & Leurs Applicat, UMR 8536, 61 Av President Wilson, F-94235 Cachan, France
关键词
Boundary observability; Water-wave equations; Cauchy problem; Pohozaev identity; STABILIZATION; TIME;
D O I
10.1016/j.anihpc.2017.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider a three-dimensional fluid in a rectangular tank, bounded by a flat bottom, vertical walls and a free surface evolving under the influence of gravity. We prove that one can estimate its energy by looking only at the motion of the points of contact between the free surface and the vertical walls. The proof relies on the multiplier technique, the Craig-Sulem-Zakharov formulation of the water-wave problem, a Pohozaev identity for the Dirichlet to Neumann operator, previous results about the Cauchy problem and computations inspired by the analysis done by Benjamin and Olver of the conservation laws for water waves. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:751 / 779
页数:29
相关论文
共 50 条
  • [31] Stability of bichromatic gravity waves on deep water
    Leblanc, Stephane
    [J]. EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2009, 28 (05) : 605 - 612
  • [32] Compact equation for gravity waves on deep water
    A. I. Dyachenko
    V. E. Zakharov
    [J]. JETP Letters, 2011, 93 : 701 - 705
  • [33] Low Regularity Solutions for Gravity Water Waves
    Ai, Albert
    [J]. WATER WAVES, 2019, 1 (01) : 145 - 215
  • [34] RESPONSE OF GRAVITY WATER WAVES TO WIND EXCITATION
    BOLE, JB
    HSU, EY
    [J]. JOURNAL OF FLUID MECHANICS, 1969, 35 : 657 - &
  • [35] Gravity waves on ice-covered water
    Keller, JB
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1998, 103 (C4): : 7663 - 7669
  • [36] Steady nonsymmetrical gravity waves with shear in water
    Baumstein, AI
    [J]. STUDIES IN APPLIED MATHEMATICS, 1999, 102 (03) : 267 - 290
  • [37] Chaotic dynamics of deep water gravity waves
    Ablowitz, MJ
    Hammack, J
    Henderson, D
    Schober, CM
    [J]. FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 255 - 259
  • [38] Generation of vortices by gravity waves on a water surface
    S. V. Filatov
    S. A. Aliev
    A. A. Levchenko
    D. A. Khramov
    [J]. JETP Letters, 2016, 104 : 702 - 708
  • [39] Generation of vortices by gravity waves on a water surface
    Filatov, S. V.
    Aliev, S. A.
    Levchenko, A. A.
    Khramov, D. A.
    [J]. JETP LETTERS, 2017, 104 (10) : 702 - 708
  • [40] On the kurtosis of deep-water gravity waves
    Fedele, Francesco
    [J]. JOURNAL OF FLUID MECHANICS, 2015, 782 : 25 - 36