Cutting Down on Prompts and Parameters: Simple Few-Shot Learning with Language Models

被引:0
|
作者
Logan, Robert L. [1 ]
Balazevic, Ivana [2 ,4 ]
Wallace, Eric [3 ]
Petroni, Fabio [4 ]
Singh, Sameer [1 ]
Riedel, Sebastian [4 ,5 ]
机构
[1] UC Irvine, Irvine, CA 92697 USA
[2] DeepMind, London, England
[3] Univ Calif Berkeley, Berkeley, CA USA
[4] Facebook AI Res, Menlo Pk, CA USA
[5] UCL, London, England
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prompting language models (LMs) with training examples and task descriptions has been seen as critical to recent successes in few-shot learning. In this work, we show that finetuning LMs in the few-shot setting can considerably reduce the need for prompt engineering. In fact, one can use null prompts, prompts that contain neither task-specific templates nor training examples, and achieve competitive accuracy to manually-tuned prompts across a wide range of tasks. While finetuning LMs does introduce new parameters for each downstream task, we show that this memory overhead can be substantially reduced-finetuning only the bias terms can achieve comparable or better accuracy than standard finetuning while only updating 0.1% of the parameters. All in all, we recommend finetuning LMs for few-shot learning as it is more accurate, has relatively stable performance across different prompts, and can be made nearly as efficient as using frozen LMs.
引用
收藏
页码:2824 / 2835
页数:12
相关论文
共 50 条
  • [41] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2023, 35 (11) : 1 - 15
  • [42] Survey on Few-shot Learning
    Zhao K.-L.
    Jin X.-L.
    Wang Y.-Z.
    Ruan Jian Xue Bao/Journal of Software, 2021, 32 (02): : 349 - 369
  • [43] Variational Few-Shot Learning
    Zhang, Jian
    Zhao, Chenglong
    Ni, Bingbing
    Xu, Minghao
    Yang, Xiaokang
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1685 - 1694
  • [44] Fractal Few-Shot Learning
    Zhou, Fobao
    Huang, Wenkai
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 16353 - 16367
  • [45] Interventional Few-Shot Learning
    Yue, Zhongqi
    Zhang, Hanwang
    Sun, Qianru
    Hua, Xian-Sheng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [46] WAVPROMPT: Towards Few-Shot Spoken Language Understanding with Frozen Language Models
    Gao, Heting
    Ni, Junrui
    Qian, Kaizhi
    Zhang, Yang
    Chang, Shiyu
    Hasegawa-Johnson, Mark
    INTERSPEECH 2022, 2022, : 2738 - 2742
  • [47] Few-Shot Lifelong Learning
    Mazumder, Pratik
    Singh, Pravendra
    Rai, Piyush
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 2337 - 2345
  • [48] A Simple Method to Improve the Performance of Small Pre-trained Language Models on Few-shot Tasks
    Zhang, Yanan
    Wu, Chaofan
    Shi, Rongkun
    Zhang, Yiying
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 1572 - 1577
  • [49] Few-Shot Learning for Misinformation Detection Based on Contrastive Models
    Zheng, Peng
    Chen, Hao
    Hu, Shu
    Zhu, Bin
    Hu, Jinrong
    Lin, Ching-Sheng
    Wu, Xi
    Lyu, Siwei
    Huang, Guo
    Wang, Xin
    ELECTRONICS, 2024, 13 (04)
  • [50] Case Study of Few-Shot Learning in Text Recognition Models
    Wang, Jianzong
    Si, Shijing
    Hong, Zhenhou
    Qu, Xiaoyang
    Zhu, Xinghua
    Xiao, Jing
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 394 - 401