Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage

被引:99
|
作者
Zhou, Dan [1 ]
Li, Xiaogang [1 ]
Fan, Li-Zhen [1 ]
Deng, Yonghong [2 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Key Lab New Energy Mat & Technol, Beijing 100083, Peoples R China
[2] South Univ Sci & Technol China, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
关键词
Anode; Carbon nanotube; Graphene; Lithium-ion batteries; Sodium-ion batteries; Tin Oxide; ENHANCED ELECTROCHEMICAL PERFORMANCE; NITROGEN-DOPED GRAPHENE; HIGH-CAPACITY ANODE; IN-SITU SYNTHESIS; ION BATTERIES; STABLE ANODES; CARBON; OXIDE; ENERGY; LI;
D O I
10.1016/j.electacta.2017.02.016
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Tin oxide (SnO2) is regarded as a promising anode material for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) due to its large theoretical capacity. However, poor electrical conductivity and the weak cyclability resulted from dramatic volume expansion upon cycling process still hinder its practical application. Herein, we report a facile two-step hydrothermal route to encapsulate core-shell structured carbon nanotube (CNT)@SnO2 composite in a graphene coating with novel three-dimensional (3D) porous framework architecture (CNT@SnO2@G) as anode for both LIBs and SIBs. The resultant CNT@SnO2@G electrode suggests outstanding lithium and sodium storage performance with large specific capacity, remarkable cycling stability and excellent rate capability. For LIBs, it delivers a high initial discharge capacity of 1400 mAh g(-1), at 100 mAg(-1), improved reversible capacity of 947 mAh g(-1), after 100 cycles at 100 mAg-1, and enhanced rate capability of 281 mAh g(-1) at 3000 mAg(-1). In addition, sodium storage testing suggests that a high discharge capacity of 323 mAh g(-1) after 100 cycles at 25 mAg(-1) was achieved. The present unique structural design associated with the remarkable lithium and sodium storage performance ensures CNT@SnO2@G as an advanced anode material for rechargeable LIBs and SIBs. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:212 / 221
页数:10
相关论文
共 50 条
  • [21] Polypyrrole-Wrapped SnS2 Vertical Nanosheet Arrays Grown on Three-Dimensional Nitrogen-Doped Porous Graphene for High-Performance Lithium and Sodium Storage
    Wang, Weiwei
    Guo, Shouzhi
    Zhang, Peilin
    Zhou, Jiao-Jiao
    Yang, Yang
    Wang, Wanqing
    Xu, Xicheng
    Chen, Fangping
    Chen, Luyang
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10): : 11101 - 11111
  • [22] Porous Fe2O3 Nanoframeworks Encapsulated within Three-Dimensional Graphene as High-Performance Flexible Anode for Lithium-Ion Battery
    Jiang, Tiancai
    Bu, Fanxing
    Feng, Xiaoxiang
    Shakir, Imran
    Hao, Guolin
    Xu, Yuxi
    ACS NANO, 2017, 11 (05) : 5140 - 5147
  • [23] Three-dimensional Porous PC/CNT Interlayer for High Performance Lithium-Sulfur Batteries
    Li R.
    Sun X.
    Huang Y.
    Wei C.
    Liang G.
    Zou J.
    Xu Y.
    He Q.
    Cailiao Daobao/Materials Reports, 2020, 34 (16): : 16006 - 16010
  • [24] Electrochemical synthesis and lithium storage properties of three-dimensional porous Sn-Co alloy/CNT composite
    Fan, Xiao-Yong
    Shi, Yong-Xin
    Wang, Jing-Jing
    Wang, Jing
    Xu, Lei
    Gou, Lei
    Li, Dong-Lin
    IONICS, 2013, 19 (11) : 1551 - 1558
  • [25] High rate performance SnO2 based three-dimensional graphene composite electrode for lithium-ion battery applications
    Zuo, Shi-yong
    Wu, Zhi-guo
    Li, Shuan-kui
    Yan, De
    Liu, Yan-hua
    Wang, Feng-yi
    Zhuo, Ren-fu
    Geng, Bai-song
    Wang, Jun
    Yan, Peng-xun
    RSC ADVANCES, 2017, 7 (29): : 18054 - 18059
  • [26] Three-Dimensional Graphene-TiO2-SnO2 Ternary Nanocomposites for High-Performance Asymmetric Supercapacitors
    Zamiri, Golnoush
    Haseeb, A. S. Md. Abdul
    Jagadish, Priyanka
    Khalid, Mohammad
    Kong, Ing
    Krishnan, Syam G.
    ACS OMEGA, 2022, : 43981 - 43991
  • [27] A Stable Three-Dimensional Porous Carbon as a High-Performance Anode Material for Lithium, Sodium, and Potassium Ion Batteries
    Younis, Umer
    Qayyum, Fizzah
    Muhammad, Imran
    Yaseen, Muhammad
    Sun, Qiang
    ADVANCED THEORY AND SIMULATIONS, 2022, 5 (09)
  • [28] Tailored graphene-encapsulated mesoporous Co3O4 composite microspheres for high-performance lithium ion batteries
    Yang, Xiaoling
    Fan, Kaicai
    Zhu, Yihua
    Shen, Jianhua
    Jiang, Xin
    Zhao, Peng
    Li, Chunzhong
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (33) : 17278 - 17283
  • [29] Three-dimensional graphene/polyaniline composite material for high-performance supercapacitor applications
    Liu, Huili
    Wang, Yi
    Gou, Xinglong
    Qi, Tao
    Yang, Jun
    Ding, Yulong
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2013, 178 (05): : 293 - 298
  • [30] Three-dimensional hierarchical graphene/TiO2 composite as high-performance electrode for supercapacitor
    Li, Sumin
    Jiang, Hui
    Yang, Kang
    Zhang, Zhao
    Li, Songjun
    Luo, Nanhui
    Liu, Qiaohong
    Wei, Ran
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 746 : 670 - 676