Metabolic engineering of Escherichia coli for the production of riboflavin

被引:89
|
作者
Lin, Zhenquan [1 ,2 ,3 ]
Xu, Zhibo [1 ,2 ,3 ]
Li, Yifan [1 ,2 ,3 ]
Wang, Zhiwen [1 ,2 ,3 ]
Chen, Tao [1 ,2 ,3 ]
Zhao, Xueming [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Dept Biochem Engn, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Key Lab Syst Bioengn, Minist Educ, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
FED-BATCH CULTIVATION; L-LYSINE PRODUCTION; BACILLUS-SUBTILIS; CORYNEBACTERIUM-GLUTAMICUM; OVER-EXPRESSION; PURINE PATHWAY; BIOSYNTHESIS; GENE; OVEREXPRESSION; GLUCOSE;
D O I
10.1186/s12934-014-0104-5
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Riboflavin (vitamin B-2), the precursor of the flavin cofactors flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), is used commercially as an animal feed supplement and food colorant. E. coli is a robust host for various genetic manipulations and has been employed for efficient production of biofuels, polymers, amino acids, and bulk chemicals. Thus, the aim of this study was to understand the metabolic capacity of E. coli for the riboflavin production by modification of central metabolism, riboflavin biosynthesis pathway and optimization of the fermentation conditions. Results: The basic producer RF01S, in which the riboflavin biosynthesis genes ribABDEC from E. coli were overexpressed under the control of the inducible trc promoter, could accumulate 229.1 mg/L of riboflavin. Further engineering was performed by examining the impact of expression of zwf (encodes glucose 6-phosphate dehydrogenase) and gnd (encodes 6-phosphogluconate dehydrogenase) from Corynebacterium glutamicum and pgl (encodes 6-phosphogluconolactonase) from E. coli on riboflavin production. Deleting pgi (encodes glucose-6-phosphate isomerase) and genes of Entner-Doudoroff (ED) pathway successfully redirected the carbon flux into the oxidative pentose phosphate pathway, and overexpressing the acs (encodes acetyl-CoA synthetase) reduced the acetate accumulation. These modifications increased riboflavin production to 585.2 mg/L. By further modulating the expression of ribF (encodes riboflavin kinase) for reducing the conversion of riboflavin to FMN in RF05S, the final engineering strain RF05S-M40 could produce 1036.1 mg/L riboflavin in LB medium at 37 degrees C. After optimizing the fermentation conditions, strain RF05S-M40 produced 2702.8 mg/L riboflavin in the optimized semi-defined medium, which was a value nearly 12-fold higher than that of RF01S, with a yield of 137.5 mg riboflavin/g glucose. Conclusions: The engineered strain RF05S-M40 has the highest yield among all reported riboflavin production strains in shake flask culture. This work collectively demonstrates that E. coli has a potential to be a microbial cell factory for riboflavin bioproduction.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Metabolic engineering of Escherichia coli for efficient ectoine production
    Zhang, Shuyan
    Fang, Yu
    Zhu, Lifei
    Li, Hedan
    Wang, Zhen
    Li, Ying
    Wang, Xiaoyuan
    SYSTEMS MICROBIOLOGY AND BIOMANUFACTURING, 2021, 1 (04): : 444 - 458
  • [42] Metabolic engineering strategies for caffeic acid production in Escherichia coli
    Hernandez-Chavez, Georgina
    Martinez, Alfredo
    Gosset, Guillermo
    ELECTRONIC JOURNAL OF BIOTECHNOLOGY, 2019, 38 (01): : 19 - 26
  • [43] Metabolic engineering of Escherichia coli for 1-butanol production
    Atsumi, Shota
    Cann, Anthony F.
    Connor, Michael R.
    Shen, Claire R.
    Smith, Kevin M.
    Brynildsen, Mark P.
    Chou, Katherine J. Y.
    Hanai, Taizo
    Liao, James C.
    METABOLIC ENGINEERING, 2008, 10 (06) : 305 - 311
  • [44] Metabolic engineering of Escherichia coli to improve recombinant protein production
    Min Liu
    Xinjun Feng
    Yamei Ding
    Guang Zhao
    Huizhou Liu
    Mo Xian
    Applied Microbiology and Biotechnology, 2015, 99 : 10367 - 10377
  • [45] Enhanced production of polysialic acid by metabolic engineering of Escherichia coli
    Chen, Fang
    Tao, Yong
    Jin, Cheng
    Xu, Yang
    Lin, Bai-Xue
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2015, 99 (06) : 2603 - 2611
  • [46] Systematic metabolic engineering of Escherichia coli for the enhanced production of cinnamaldehyde
    Bang, Hyun Bae
    Son, Jaewoo
    Kim, Sun Chang
    Jeong, Ki Jun
    METABOLIC ENGINEERING, 2023, 76 : 63 - 74
  • [47] Metabolic engineering for advanced biofuels production from Escherichia coli
    Atsumi, Shota
    Liao, James C.
    CURRENT OPINION IN BIOTECHNOLOGY, 2008, 19 (05) : 414 - 419
  • [48] Metabolic engineering of Escherichia coli for the production of 1-propanol
    Choi, Yong Jun
    Park, Jin Hwan
    Kim, Tae Yong
    Lee, Sang Yup
    METABOLIC ENGINEERING, 2012, 14 (05) : 477 - 486
  • [49] Precursor balancing for metabolic engineering of lycopene production in Escherichia coli
    Farmer, WR
    Liao, JC
    BIOTECHNOLOGY PROGRESS, 2001, 17 (01) : 57 - 61
  • [50] Metabolic engineering of Escherichia coli for secretory production of free haem
    Xin Rui Zhao
    Kyeong Rok Choi
    Sang Yup Lee
    Nature Catalysis, 2018, 1 : 720 - 728