Leverage Surface Chemistry for High-Performance Triboelectric Nanogenerators

被引:59
|
作者
Xu, Jing [1 ]
Zou, Yongjiu [1 ]
Nashalian, Ardo [1 ]
Chen, Jun [1 ]
机构
[1] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90032 USA
来源
FRONTIERS IN CHEMISTRY | 2020年 / 8卷
关键词
surface chemistry; surface engineering; triboelectric nanogenerator; wearable electronics; Internet of Things; ATOMIC LAYER DEPOSITION; WATER-WAVE ENERGY; SEQUENTIAL INFILTRATION SYNTHESIS; HARVESTING BIOMECHANICAL ENERGY; CHARGE-DENSITY; THINGS IOT; STRUCTURAL OPTIMIZATION; ELECTROSTATIC-INDUCTION; POLYMER NANOCOMPOSITES; PRESSURE SENSORS;
D O I
10.3389/fchem.2020.577327
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Triboelectric Nanogenerators (TENGs) are a highly efficient approach for mechanical-to-electrical energy conversion based on the coupling effects of contact electrification and electrostatic induction. TENGs have been intensively applied as both sustainable power sources and self-powered active sensors with a collection of compelling features, including lightweight, low cost, flexible structures, extensive material selections, and high performances at low operating frequencies. The output performance of TENGs is largely determined by the surface triboelectric charges density. Thus, manipulating the surface chemical properties via appropriate modification methods is one of the most fundamental strategies to improve the output performances of TENGs. This article systematically reviews the recently reported chemical modification methods for building up high-performance TENGs from four aspects: functional groups modification, ion implantation and decoration, dielectric property engineering, and functional sublayers insertion. This review will highlight the contribution of surface chemistry to the field of triboelectric nanogenerators by assessing the problems that are in desperate need of solving and discussing the field's future directions.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Metal Island Structure as a Power Booster for High-Performance Triboelectric Nanogenerators
    Ravichandran, Aravind Narain
    Ramuz, Marc
    Blayac, Sylvain
    ADVANCED MATERIALS TECHNOLOGIES, 2020, 5 (11)
  • [22] Synergetic effect of piezo-triboelectric mechanism for high-performance nanogenerators
    Tayyab, Muhammad
    Zhu, Zhiguo
    Lu, Hongyu
    Ma, Guanyu
    Abbasi, Nasir Mahmood
    Gu, Dawei
    Wu, Bo
    Joseph, Yvonne
    Gao, Deqing
    Wei, Huang
    NANO ENERGY, 2022, 104
  • [23] Corn Starch-Derived Gel for High-Performance Triboelectric Nanogenerators
    Kamilya, Tapas
    Shin, Jaehee
    Cho, Hanchul
    Park, Jinhyoung
    ACS APPLIED POLYMER MATERIALS, 2023, 6 (01) : 1006 - 1014
  • [24] Construction of high-performance triboelectric nanogenerators based on the microstructures of conical nanoneedles
    Wang, Lixia
    Sun, Xiang
    Wang, Dongfang
    Wang, Chen
    Bi, Zhaojie
    Zhou, Baokai
    Zheng, Lun
    Niu, Hongbin
    Cui, Pengyuan
    Wang, Jian
    Li, Qian
    NEW JOURNAL OF CHEMISTRY, 2022, 46 (46) : 22064 - 22075
  • [25] Increasing surface charge density by effective charge accumulation layer inclusion for high-performance triboelectric nanogenerators
    Ravichandran, Aravind Narain
    Ramuz, Marc
    Blayac, Sylvain
    MRS COMMUNICATIONS, 2019, 9 (02) : 682 - 689
  • [26] Increasing surface charge density by effective charge accumulation layer inclusion for high-performance triboelectric nanogenerators
    Aravind Narain Ravichandran
    Marc Ramuz
    Sylvain Blayac
    MRS Communications, 2019, 9 : 682 - 689
  • [27] Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Jiang, Chenghanzhi
    Wu, Mengjie
    NANO ENERGY, 2020, 78
  • [28] Interfacial modification boosted permittivity and triboelectric performance of liquid doping composites for high-performance flexible triboelectric nanogenerators
    Jing, Titao
    Xu, Bingang
    Yang, Yujue
    Jiang, Chenghanzhi
    Wu, Mengjie
    Nano Energy, 2020, 78
  • [29] Design and synthesis of triboelectric polymers for high performance triboelectric nanogenerators
    Tao, Xinglin
    Chen, Xiangyu
    Wang, Zhong Lin
    ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (09) : 3654 - 3678
  • [30] Leveraging Bio-Waste onion skin for High-Performance triboelectric nanogenerators
    Chang, Po-Yen
    Huang, Ting-Ying
    Yang, Chien-Hung
    Lee, Chia-Hsien
    Jeng, Ru-Jong
    Chen, Chih-Ping
    Lin, Meng-Fang
    CHEMICAL ENGINEERING JOURNAL, 2025, 506