Assessing the Accuracy of Automatically Extracted Shorelines on Microtidal Beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery

被引:99
|
作者
Pardo-Pascual, Josep E. [1 ]
Sanchez-Garcia, Elena [1 ]
Almonacid-Caballer, Jaime [1 ]
Palomar-Vazquez, Jesus M. [1 ]
Priego de los Santos, Enrique [2 ]
Fernandez-Sarria, Alfonso [1 ]
Balaguer-Beser, Angel [1 ,3 ]
机构
[1] Univ Politecn Valencia, Dept Cartog Engn Geodesy & Photogrammetry, Geoenvironm Cartog & Remote Sensing Grp, Cami Vera S-N, E-46022 Valencia, Spain
[2] Univ Politecn Valencia, Dept Cartog Engn Geodesy & Photogrammetry, Cami Vera S-N, E-46022 Valencia, Spain
[3] Univ Politecn Valencia, Dept Appl Math, Cami Vera S-N, E-46022 Valencia, Spain
来源
REMOTE SENSING | 2018年 / 10卷 / 02期
关键词
coastline extraction; sub-pixel precision; sandy beach monitoring; mid-resolution satellite imagery; IR bands; coastal wave conditions; SANDY BEACHES; NORTH-CAROLINA; SEA FOAM; LIDAR; WATER; REFLECTANCE; SATELLITE; TM; CLASSIFICATION; POSITION;
D O I
10.3390/rs10020326
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper evaluates the accuracy of shoreline positions obtained from the infrared (IR) bands of Landsat 7, Landsat 8, and Sentinel-2 imagery on natural beaches. A workflow for sub-pixel shoreline extraction, already tested on seawalls, is used. The present work analyzes the behavior of that workflow and resultant shorelines on a micro-tidal (<20 cm) sandy beach and makes a comparison with other more accurate sets of shorelines. These other sets were obtained using differential GNSS surveys and terrestrial photogrammetry techniques through the C-Pro monitoring system. 21 sub-pixel shorelines and their respective high-precision lines served for the evaluation. The results prove that NIR bands can easily confuse the shoreline with whitewater, whereas SWIR bands are more reliable in this respect. Moreover, it verifies that shorelines obtained from bands 11 and 12 of Sentinel-2 are very similar to those obtained with bands 6 and 7 of Landsat 8 (-0.75 +/- 2.5 m; negative sign indicates landward bias). The variability of the brightness in the terrestrial zone influences shoreline detection: brighter zones cause a small landward bias. A relation between the swell and shoreline accuracy is found, mainly identified in images obtained from Landsat 8 and Sentinel-2. On natural beaches, the mean shoreline error varies with the type of image used. After analyzing the whole set of shorelines detected from Landsat 7, we conclude that the mean horizontal error is 4.63 m (+/- 6.55 m) and 5.50 m (+/- 4.86 m), respectively, for high and low gain images. For the Landsat 8 and Sentinel-2 shorelines, the mean error reaches 3.06 m (+/- 5.79 m).
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Comparative Analysis of Big Data Acquisition Technology from Landsat 8 and Sentinel-2 Satellites
    Veretekhina, Svetlana
    Sergey, Krapivka
    Pronkina, Tatiana
    Khalyukin, Vladimir
    Alla, Medvedeva
    Khudyakova, Elena
    Stepantsevich, Marina
    CYBERNETICS PERSPECTIVES IN SYSTEMS, VOL 3, 2022, 503 : 41 - 53
  • [42] Synergistic use of Sentinel-1, Sentinel-2, and Landsat 8 in predicting forest variables
    Fang, Gengsheng
    Xu, Hao
    Yang, Sheng-, I
    Lou, Xiongwei
    Fang, Luming
    ECOLOGICAL INDICATORS, 2023, 151
  • [43] Calibration of volumetric soil moisture using Landsat-8 and Sentinel-2 satellite imagery by Google Earth Engine
    Quintana-Molina, Jose Rodolfo
    Sanchez-Cohen, Ignacio
    Jimenez-Jimenez, Sergio Ivan
    Marcial-Pablo, Mariana de Jesus
    Trejo-Calzada, Ricardo
    Quintana-Molina, Emilio
    REVISTA DE TELEDETECCION, 2023, (62): : 21 - 38
  • [44] Estimation of Forest Stock Volume Using Sentinel-2 MSI, Landsat 8 OLI Imagery and Forest Inventory Data
    Zhou, Yangyang
    Feng, Zhongke
    FORESTS, 2023, 14 (07):
  • [45] Estimating grassland vegetation cover with remote sensing: A comparison between Landsat-8, Sentinel-2 and PlanetScope imagery
    Andreatta, Davide
    Gianelle, Damiano
    Scotton, Michele
    Dalponte, Michele
    ECOLOGICAL INDICATORS, 2022, 141
  • [46] Antarctic Supraglacial Lake Detection Using Landsat 8 and Sentinel-2 Imagery: Towards Continental Generation of Lake Volumes
    Moussavi, Mahsa
    Pope, Allen
    Halberstadt, Anna Ruth W.
    Trusel, Luke D.
    Cioffi, Leanne
    Abdalati, Waleed
    REMOTE SENSING, 2020, 12 (01)
  • [47] Improving Retrieval of Sea Surface Roughness From Landsat-8 OLI and Sentinel-2 MSI Imagery by Eliminating for Ambiguity Effects
    Wang, Chen
    Zhang, Huaguo
    Liao, Guanghong
    Cao, Wenting
    Wang, Juan
    Li, Dongling
    Lou, Xiulin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [48] Evaluation of RadCalNet Output Data Using Landsat 7, Landsat 8, Sentinel 2A, and Sentinel 2B Sensors
    Jing, Xin
    Leigh, Larry
    Pinto, Cibele Teixeira
    Helder, Dennis
    REMOTE SENSING, 2019, 11 (05)
  • [49] Radiometric Correction of Simultaneously Acquired Landsat-7/Landsat-8 and Sentinel-2A Imagery Using Pseudoinvariant Areas (PIA): Contributing to the Landsat Time Series Legacy
    Padro, Joan-Cristian
    Pons, Xavier
    Aragones, David
    Diaz-Delgado, Ricardo
    Garcia, Diego
    Bustamante, Javier
    Pesquer, Lluis
    Domingo-Marimon, Cristina
    Gonzalez-Guerrero, Oscar
    Cristobal, Jordi
    Doktor, Daniel
    Lange, Maximilian
    REMOTE SENSING, 2017, 9 (12):
  • [50] Evaluation of Landsat-9 interoperability with Sentinel-2 and Landsat-8 over Europe and local comparison with field surveys
    Trevisiol, F.
    Mandanici, E.
    Pagliarani, A.
    Bitelli, G.
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 210 : 55 - 68