Statistical inference and computational efficiency for spatial infectious disease models with plantation data

被引:7
|
作者
Brown, Patrick E. [1 ,2 ]
Chimard, Florencia [3 ]
Remorov, Alexander [2 ]
Rosenthal, Jeffrey S. [2 ]
Wang, Xin [2 ]
机构
[1] Canc Care Ontario, 620 Univ Ave, Toronto, ON M5G 2L7, Canada
[2] Univ Toronto, Toronto, ON M5S 1A1, Canada
[3] Univ Antilles Guyane, Pointe A Pitre, Guadeloupe, France
关键词
Individual level models; Markov chain Monte Carlo methods; Spatial statistics;
D O I
10.1111/rssc.12036
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The paper considers data from an aphid infestation on a sugar cane plantation and illustrates the use of an individual level infectious disease model for making inference on the biological process underlying these data. The data are interval censored, and the practical issues involved with the use of Markov chain Monte Carlo algorithms with models of this sort are explored and developed. As inference for spatial infectious disease models is complex and computationally demanding, emphasis is put on a minimal parsimonious model and speed of code execution. With careful coding we can obtain highly efficient Markov chain Monte Carlo algorithms based on a simple random-walk Metropolis-within-Gibbs routine. An assessment of model fit is provided by comparing the predicted numbers of weekly infections from the data to the trajectories of epidemics simulated from the posterior distributions of model parameters. This assessment shows that the data have periods where the epidemic proceeds more slowly and more quickly than the (temporally homogeneous) model predicts.
引用
收藏
页码:467 / 482
页数:16
相关论文
共 50 条
  • [1] Contemporary statistical inference for infectious disease models using Stan
    Chatzilena, Anastasia
    van Leeuwen, Edwin
    Ratmann, Oliver
    Baguelin, Marc
    Demiris, Nikolaos
    EPIDEMICS, 2019, 29
  • [2] Structured models of infectious disease: Inference with discrete data
    Metcalf, C. J. E.
    Lessler, J.
    Klepac, P.
    Morice, A.
    Grenfell, B. T.
    Bjornstad, O. N.
    THEORETICAL POPULATION BIOLOGY, 2012, 82 (04) : 275 - 282
  • [3] Spatial autoregressive models for statistical inference from ecological data
    Ver Hoef, Jay M.
    Peterson, Erin E.
    Hooten, Mevin B.
    Hanks, Ephraim M.
    Fortin, Marie-Josee
    ECOLOGICAL MONOGRAPHS, 2018, 88 (01) : 36 - 59
  • [4] MODELS FOR THE STATISTICAL-ANALYSIS OF INFECTIOUS-DISEASE DATA
    HABER, M
    LONGINI, IM
    COTSONIS, GA
    BIOMETRICS, 1988, 44 (01) : 163 - 173
  • [5] p values for pathogens: statistical inference from infectious-disease data
    Mutapi, F
    Roddam, A
    LANCET INFECTIOUS DISEASES, 2002, 2 (04): : 219 - 230
  • [6] Mind the Scales: Harnessing Spatial Big Data for Infectious Disease Surveillance and Inference
    Lee, Elizabeth C.
    Asher, Jason M.
    Goldlust, Sandra
    Kraemer, John D.
    Lawson, Andrew B.
    Bansal, Shweta
    JOURNAL OF INFECTIOUS DISEASES, 2016, 214 : S409 - S413
  • [7] Spatial-statistical analysis of infectious disease notification data in Lower Saxony
    Dreesman, J
    Scharlach, H
    GESUNDHEITSWESEN, 2004, 66 (12) : 783 - 789
  • [8] Statistical Inference, Learning and Models in Big Data
    Franke, Beate
    Plante, Jean-Francois
    Roscher, Ribana
    Lee, En-Shiun Annie
    Smyth, Cathal
    Hatefi, Armin
    Chen, Fuqi
    Gil, Einat
    Schwing, Alexander
    Selvitella, Alessandro
    Hoffman, Michael M.
    Grosse, Roger
    Hendricks, Dieter
    Reid, Nancy
    INTERNATIONAL STATISTICAL REVIEW, 2016, 84 (03) : 371 - 389
  • [9] Statistical inference in dynamic panel data models
    Lai, Tze Leung
    Small, Dylan S.
    Liu, Jia
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2008, 138 (09) : 2763 - 2776
  • [10] Graphical models for statistical inference and data assimilation
    Ihler, Alexander T.
    Kirshner, Sergey
    Ghil, Michael
    Robertson, Andrew W.
    Smyth, Padhraic
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 230 (1-2) : 72 - 87