Emotional State Recognition with EEG Signals Using Subject Independent Approach

被引:27
|
作者
Pandey, Pallavi [1 ]
Seeja, K. R. [1 ]
机构
[1] Indira Gandhi Delhi Tech Univ Woman, Dept Comp Sci & Engn, New Delhi, India
来源
关键词
Electroencephalogram; Affective computing; Multilayer perceptron; SELECTION;
D O I
10.1007/978-981-10-7641-1_10
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
EEG signals vary from human to human and hence it is very difficult to create a subject independent emotion recognition system. Even though subject dependent methodologies could achieve good emotion recognition accuracy, the subject-independent approaches are still in infancy. EEG is reliable than facial expression or speech signal to recognize emotions, since it can not be fake. In this paper, a Multilayer Perceptron neural network based subject-independent emotion recognition system is proposed. Performance evaluation of the proposed system, on the benchmark DEAP dataset shows good accuracy compared to the state of the art subject independent methods.
引用
收藏
页码:117 / 124
页数:8
相关论文
共 50 条
  • [21] An Unsupervised Subject Identification Technique Using EEG Signals
    Birjandtalab, Javad
    Baran Pouyan, Maziyar
    Nourani, Mehrdad
    [J]. 2016 38TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2016, : 816 - 819
  • [22] Emotional State Detection Using Electroencephalogram Signals: A Genetic Algorithm Approach
    Garcia-Hernandez, Rosa A.
    Celaya-Padilla, Jose M.
    Luna-Garcia, Huizilopoztli
    Garcia-Hernandez, Alejandra
    Galvan-Tejada, Carlos E.
    Galvan-Tejada, Jorge I.
    Gamboa-Rosales, Hamurabi
    Rondon, David
    Villalba-Condori, Klinge O.
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (11):
  • [23] Subject-independent Pain Recognition using Physiological Signals and Para-linguistic Vocalizations
    Shoukry, Nadeen
    Elkilany, Omar
    Thiam, Patrick
    Kessler, Viktor
    Schwenker, Friedhelm
    [J]. ICPRAM: PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2020, : 142 - 150
  • [24] Voice Command Recognition Using EEG Signals
    Rosinova, Marianna
    Lojka, Martin
    Stas, Jan
    Juhar, Jozef
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL SYMPOSIUM ELMAR, 2017, : 153 - 156
  • [25] Interpretable Emotion Recognition Using EEG Signals
    Qing, Chunmei
    Qiao, Rui
    Xu, Xiangmin
    Cheng, Yongqiang
    [J]. IEEE ACCESS, 2019, 7 : 94160 - 94170
  • [26] Emotions Recognition Using EEG Signals: A Survey
    Alarcao, Soraia M.
    Fonseca, Manuel J.
    [J]. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2019, 10 (03) : 374 - 393
  • [27] Classification of EEG Signals Based on Pattern Recognition Approach
    Amin, Hafeez Ullah
    Mumtaz, Wajid
    Subhani, Ahmad Rauf
    Saad, Mohamad Naufal Mohamad
    Malik, Aamir Saeed
    [J]. FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2017, 11
  • [28] A Symbolic Representation Approach of EEG Signals for Emotion Recognition
    Du, Jiachen
    Xu, Ruifeng
    Wen, Zhiyuan
    [J]. 2017 INTERNATIONAL CONFERENCE ON SECURITY, PATTERN ANALYSIS, AND CYBERNETICS (SPAC), 2017, : 666 - 671
  • [29] Cross-Subject Emotion Recognition Using Flexible Analytic Wavelet Transform From EEG Signals
    Gupta, Vipin
    Chopda, Mayur Dahyabhai
    Pachori, Ram Bilas
    [J]. IEEE SENSORS JOURNAL, 2019, 19 (06) : 2266 - 2274
  • [30] Emotional state classification from EEG data using machine learning approach
    Wang, Xiao-Wei
    Nie, Dan
    Lu, Bao-Liang
    [J]. NEUROCOMPUTING, 2014, 129 : 94 - 106