On products of normal supersoluble subgroups

被引:0
|
作者
Perez, ER [1 ]
机构
[1] De La Salle Univ, Dept Math, Manila 1004, Philippines
关键词
supersoluble groups; locally supersoluble groups; metacyclic groups; soluble T-groups;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper identifies a certain class of supersoluble groups (called finitely generated hallsiding groups) which contains the finitely generated nilpotent groups, the metacyclic and the finitely generated soluble T-groups. The main result states that the product of a normal finitely generated hallsiding subgroup and a subnormal supersoluble subgroup is always supersoluble. Some results about products of normal locally supersoluble subgroups are also given. 1991 Mathematics Subject Classification: 20F16, 20E25.
引用
收藏
页码:341 / 347
页数:7
相关论文
共 50 条
  • [11] On finite groups with many supersoluble subgroups
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    Lu, Jiakuan
    ARCHIV DER MATHEMATIK, 2017, 109 (01) : 3 - 8
  • [12] Finite groups with two supersoluble subgroups
    Monakhov, Victor S.
    Trofimuk, Alexander A.
    JOURNAL OF GROUP THEORY, 2019, 22 (02) : 297 - 312
  • [13] Finite groups with subgroups supersoluble or subnormal
    Ballester-Bolinchesa, A.
    Cossey, John
    JOURNAL OF ALGEBRA, 2009, 321 (07) : 2042 - 2052
  • [14] A NOTE ON PRODUCTS OF NORMAL SUBGROUPS
    SHORES, TS
    CANADIAN MATHEMATICAL BULLETIN, 1969, 12 (01): : 21 - &
  • [15] PRODUCTS OF NORMAL SUPERSOLVABLE SUBGROUPS
    FRIESEN, DK
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 30 (01) : 46 - &
  • [16] On finite groups with many supersoluble subgroups
    A. Ballester-Bolinches
    R. Esteban-Romero
    Jiakuan Lu
    Archiv der Mathematik, 2017, 109 : 3 - 8
  • [17] MAXIMAL SUPERSOLUBLE SUBGROUPS OF SYMMETRICAL GROUPS
    BIANCHI, M
    MAURI, AGB
    HAUCK, P
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1991, 159 : 371 - 404
  • [18] PRODUCTS OF PARTIAL NORMAL SUBGROUPS
    Henke, Ellen
    PACIFIC JOURNAL OF MATHEMATICS, 2015, 279 (1-2) : 255 - 268
  • [19] Finite groups with supersoluble subgroups of given orders
    Monakhov, V. S.
    Tyutyanov, V. N.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 155 - 163
  • [20] On large orbits of supersoluble subgroups of linear groups
    Meng, H.
    Ballester-Bolinches, A.
    Esteban-Romero, R.
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (02): : 490 - 504